359 research outputs found

    The effect of CYP2D6 variation on antipsychotic-induced hyperprolactinaemia: a systematic review and meta-analysis

    Get PDF
    Hyperprolactinemia is a known adverse drug reaction to antipsychotic treatment. Antipsychotic blood levels are influenced by cytochrome P450 enzymes, primarily CYP2D6. Variation in CYP450 genes may affect the risk of antipsychotic-induced hyperprolactinemia. We undertook a systematic review and meta-analysis to assess whether CYP2D6 functional genetic variants are associated with antipsychotic-induced hyperprolactinemia. The systematic review identified 16 relevant papers, seven of which were suitable for the meta-analysis (n = 303 participants including 134 extreme metabolisers). Participants were classified into four phenotype groups as poor, intermediate, extensive, and ultra-rapid metabolisers. A random effects meta-analysis was used and Cohen’s d calculated as the effect size for each primary study. We found no significant differences in prolactin levels between CYP2D6 metabolic groups. Current evidence does not support using CYP2D6 genotyping to reduce risk of antipsychotic-induced hyperprolactinemia. However, statistical power is limited. Future studies with larger samples and including a range of prolactin-elevating drugs are needed

    Modeling Disease Vector Occurrence when Detection Is Imperfect: Infestation of Amazonian Palm Trees by Triatomine Bugs at Three Spatial Scales

    Get PDF
    Blood-sucking bugs of the genus Rhodnius are major vectors of Chagas disease. Control and surveillance of Chagas disease transmission critically depend on ascertaining whether households and nearby ecotopes (such as palm trees) are infested by these vectors. However, no bug detection technique works perfectly. Because more sensitive methods are more costly, vector searches face a trade-off between technical prowess and sample size. We compromise by using relatively inexpensive sampling techniques that can be applied multiple times to a large number of palms. With these replicated results, we estimate the probability of failing to detect bugs in a palm that is actually infested. We incorporate this information into our analyses to derive an unbiased estimate of palm infestation, and find it to be about 50% – twice the observed proportion of infested palms. We are then able to model the effects of regional, landscape, and local environmental variables on palm infestation. Individual palm attributes contribute overwhelmingly more than landscape or regional covariates to explaining infestation, suggesting that palm tree management can help mitigate risk locally. Our results illustrate how explicitly accounting for vector, pathogen, or host detection failures can substantially improve epidemiological parameter estimation when perfect detection techniques are unavailable

    Hepatic profile analyses of tipranavir in Phase II and III clinical trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk and course of serum transaminase elevations (TEs) and clinical hepatic serious adverse event (SAE) development in ritonavir-boosted tipranavir (TPV/r) 500/200 mg BID recipients, who also received additional combination antiretroviral treatment agents in clinical trials (TPV/r-based cART), was determined.</p> <p>Methods</p> <p>Aggregated transaminase and hepatic SAE data through 96 weeks of TPV/r-based cART from five Phase IIb/III trials were analyzed. Patients were categorized by the presence or absence of underlying liver disease (+LD or -LD). Kaplan-Meier (K-M) probability estimates for time-to-first US National Institutes of Health, Division of AIDS (DAIDS) Grade 3/4 TE and clinical hepatic SAE were determined and clinical actions/outcomes evaluated. Risk factors for DAIDS Grade 3/4 TE were identified through multivariate Cox regression statistical modeling.</p> <p>Results</p> <p>Grade 3/4 TEs occurred in 144/1299 (11.1%) patients; 123/144 (85%) of these were asymptomatic; 84% of these patients only temporarily interrupted treatment or continued, with transaminase levels returning to Grade ≤ 2. At 96 weeks of study treatment, the incidence of Grade 3/4 TEs was higher among the +LD (16.8%) than among the -LD (10.1%) patients. K-M analysis revealed an incremental risk for developing DAIDS Grade 3/4 TEs; risk was greatest through 24 weeks (6.1%), and decreasing thereafter (>24-48 weeks: 3.4%, >48 weeks-72 weeks: 2.0%, >72-96 weeks: 2.2%), and higher in +LD than -LD patients at each 24-week interval. Treatment with TPV/r, co-infection with hepatitis B and/or C, DAIDS grade >1 TE and CD4<sup>+ </sup>> 200 cells/mm<sup>3 </sup>at baseline were found to be independent risk factors for development of DAIDS Grade 3/4 TE; the hazard ratios (HR) were 2.8, 2.0, 2.1 and 1.5, respectively. Four of the 144 (2.7%) patients with Grade 3/4 TEs developed hepatic SAEs; overall, 14/1299 (1.1%) patients had hepatic SAEs including six with hepatic failure (0.5%). The K-M risk of developing hepatic SAEs through 96 weeks was 1.4%; highest risk was observed during the first 24 weeks and decreased thereafter; the risk was similar between +LD and -LD patients for the first 24 weeks (0.6% and 0.5%, respectively) and was higher for +LD patients, thereafter.</p> <p>Conclusion</p> <p>Through 96 weeks of TPV/r-based cART, DAIDS Grade 3/4 TEs and hepatic SAEs occurred in approximately 11% and 1% of TPV/r patients, respectively; most (84%) had no significant clinical implications and were managed without permanent treatment discontinuation. Among the 14 patients with hepatic SAE, 6 experienced hepatic failure (0.5%); these patients had profound immunosuppression and the rate appears higher among hepatitis co-infected patients. The overall probability of experiencing a hepatic SAE in this patient cohort was 1.4% through 96 weeks of treatment. Independent risk factors for DAIDS Grade 3/4 TEs include TPV/r treatment, co-infection with hepatitis B and/or C, DAIDS grade >1 TE and CD4<sup>+ </sup>> 200 cells/mm<sup>3 </sup>at baseline.</p> <p>Trial registration</p> <p>US-NIH Trial registration number: NCT00144170</p

    Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients

    Get PDF
    This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid (mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIVinfected patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs. Activated population markers were elevated, and the proportion of Tregs was significantly higher in HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral therapy to preserve dendritic and regulatory cell function in HIV-infected individuals

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Comparative descriptions of eggs from three species of Rhodnius (Hemiptera: Reduviidae: Triatominae)

    Get PDF
    The authors describe and compare the morphological and ultrastructural characteristics of eggs from the three most recent described species of the genus Rhodnius Stål, 1859, which have not previously been studied. These species are Rhodnius colombiensis (Mejia, Galvão & Jurberg 1999), Rhodnius milesi (Carcavallo, Rocha, Galvão & Jurberg 2001) and Rhodnius stali (Lent, Jurberg & Galvão 1993). The results revealed that there are similarities in the exochorial architecture of optical microscopy and scanning electron microscopy; these include the predominance of hexagonal cells that are common to all Rhodnius species and variable degrees of lateral flattening, which is common not only to species of this genus, but also to the Rhodniini tribe. Differences in overall colour, the presence of a collar in R. milesi, a longitudinal bevel in R. stali and the precise length of R. colombiensis can be useful distinguishing features. As a result of this study, the key for egg identification proposed by Barata in 1981 can be updated.European Community - Chagas Disease Intervention ActivitiesCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Nucleolar protein CSIG is required for p33ING1 function in UV-induced apoptosis

    Get PDF
    Cellular senescence-inhibited gene (CSIG) protein, a nucleolar protein with a ribosomal L1 domain in its N-terminus, can exert non-ribosomal functions to regulate biological processes, such as cellular senescence. Here, we describe a previously unknown function for CSIG: promotion of apoptosis in response to ultraviolet (UV) irradiation-induced CSIG upregulation. We identified p33ING1 as a binding partner that interacts with CSIG. After UV irradiation, p33ING1 increases its protein expression, translocates into the nucleolus and binds CSIG. p33ING1 requires its nucleolar targeting sequence region to interact with CSIG and enhance CSIG protein stability, which is essential for activation of downstream effectors, Bcl-2-associated X protein, to promote apoptosis. Thus, our data imply that p33ING1–CSIG axis functions as a novel pro-apoptotic regulator in response to DNA damage
    • …
    corecore