22 research outputs found

    Nanotechnology advances towards development of targeted-treatment for obesity

    Get PDF
    Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modifcation or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specifcity and unsustainable weight loss efects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side efects, and enhanced efcacy. These efects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbiditie

    Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis

    No full text
    Moustafa R K Ali,1 Ibrahim M Ibrahim,2,† Hala R Ali,2,3 Salah A Selim,2 Mostafa A El-Sayed1,4 1School of Chemistry and Biochemistry, Georgia Institute of Technology, and Laser Dynamics Laboratory, Atlanta, GA, USA; 2Department of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt; 3Department of Bacteriology and Immunology, Animal Health Research Institute (AHRI), Dokki, Giza, Egypt; 4School of Chemistry, King Abdul Aziz University, Jeddah, Saudi Arabia †Ibrahim M Ibrahim passed away on August 23, 2015 Abstract: Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment. Keywords: gold nanorods, natural mammary tumors, plasmonic photothermal therapy, canine, felin
    corecore