19 research outputs found

    Spondylodiscitis following endovascular abdominal aortic aneurysm repair: imaging perspectives from a single centre's experience.

    Get PDF
    OBJECTIVE: Very few reports have previously described spondylodiscitis as a potential complication of endovascular aortic aneurysm repair (EVAR). We present to our knowledge the first case series of spondylodiscitis following EVAR based on our institution's experience over an 11-year period. Particular attention is paid to the key imaging features and challenges encountered when performing spinal imaging in this complex patient group. MATERIALS AND METHODS: Of 1,847 patients who underwent EVAR at our institution between January 2006 and January 2017, a total of 9 patients were identified with imaging features of spondylodiscitis (0.5%). All cross-sectional studies before and after EVAR were assessed by a Consultant Musculoskeletal Radiologist and a Musculoskeletal Radiology Fellow to evaluate for features of spondylodiscitis. RESULTS: All 9 patients had single-level spondylodiscitis involving lumbosacral levels adjacent to the aortic/iliac stent graft. Eight out of nine patients had an extensive anterior paravertebral phlegmon/abscess that was contiguous with the infected stent graft and native aneurysm sac ± anterior vertebral body erosion. Epidural disease was present in only 3 out of 9 patients and was a minor feature. MRI was non-diagnostic in 3 out of 9 patients owing to susceptibility artefact. 18F-FDG PET/CT accurately depicted the spinal level involved and adjacent paravertebral disease in patients with non-diagnostic MRI and was adopted as the follow-up modality in 3 out of 5 surviving patients. CONCLUSION: Spondylodiscitis is a rare complication post-EVAR. Imaging features of disproportionate anterior paravertebral disease and anterior vertebral body bony involvement suggest direct spread of infection posteriorly to the adjacent vertebral column. Use of MRI versus 18F-FDG PET/CT as the optimal imaging modality should be directed by the type of stent graft deployed

    A Gesture-Based Interface for Remote Surgery

    No full text
    International audienceThere has been a great deal of research activity in computer- and robot-assisted surgeries in recent years. Some of the advances have included robotic hip surgery, image-guided endoscopic surgery, and the use of intra-operative MRI to assist in neurosurgery. However, most of the work in the literature assumes that all of the expert surgeons are physically present close to the location of a surgery. A new direction that is now worth investigating is assisting in performing surgeries remotely. As a first step in this direction, this chapter presents a system that can detect movement of hands and fingers, and thereby detect gestures, which can be used to control a catheter remotely. Our development is aimed at performing remote endovascular surgery by controlling the movement of a catheter through blood vessels. Our hand movement detection is facilitated by sensors, like LEAP, which can track the position of fingertips and the palm. In order to make the system robust to occlusions, we have improved the implementation by optimally integrating the input from two different sensors. Following this step, we identify high-level gestures, like push and turn, to enable remote catheter movements. To simulate a realistic environment we have fabricated a flexible endovascular mold, and also a phantom of the abdominal region with the endovascular mold integrated inside. A mechanical device that can remotely control a catheter based on movement primitives extracted from gestures has been built. Experimental results are shown demonstrating the accuracy of the system
    corecore