3,366 research outputs found

    The ecology of seamounts: structure, function, and human impacts.

    Get PDF
    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research

    Bone quality changes as measured by Raman and FTIR spectroscopy in primiparous cows with humeral fracture from New Zealand.

    Get PDF
    The occurrence of spontaneous humeral fractures in primiparous dairy cows from New Zealand prompted the study of bone material from affected cows to further characterize this condition and to outline a likely pathogenesis. Previous studies indicate that these cows developed osteoporosis due to periods of suboptimal bone formation followed by increased bone resorption during the period of lactation complicated by copper deficiency. We hypothesized that there are significant differences in the chemical composition/bone quality in bones from cows with spontaneous humeral fracture compared to cows without humeral fractures. In this study, Raman and Fourier transform infrared spectroscopy band ratios were, for the first time, measured, calculated, and compared in bone samples from 67 primiparous dairy cows that suffered a spontaneous fracture of the humerus and 14 age-matched post-calving cows without humeral fractures. Affected bone showed a significantly reduced mineral/matrix ratio, increased bone remodeling, newer bone tissue with lower mineralization and, lower carbonate substitution, and reduced crystallinity. As such, is likely that these have detrimentally impacted bone quality and strength in affected cows.Published onlin

    Color constancy and color term knowledge are positively related during early childhood

    Get PDF
    The ability to keep perception constant despite environmental changes of illumination, viewing angle, or distance is a key feature of perception. Here, we investigated how “perceptual constancy” relates to language learning by investigating the relationship between color constancy and color term knowledge in 3- and 4-year-old children. We used a novel method to test color constancy where children are required to match colored stimuli under different illuminations. We found a positive relationship between color constancy and color term knowledge; children who knew more color words also had better color constancy. The relationship remained even when accounting for the effect of age and ability to discriminate colors. The findings have implications for understanding the development of perceptual constancy, language learning, and the link between perceptual processing and cognitive development

    An Optimal Frequency in Ca<sup>2+</sup> oscillations for stomatal closure is an emergent property of ion transport in guard cells<sup>1[OPEN]</sup>

    Get PDF
    Oscillations in cytosolic-free Ca2+ concentration ([Ca2+]i) have been proposed to encode information that controls stomatal closure. [Ca2+]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca2+]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca2+]i and, with the accompanying oscillations in voltage, drive the K+ and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    A literature review on surgery for cervical vagal schwannomas

    Get PDF
    Cervical vagal schwannoma is a benign, slow-growing mass, often asymptomatic, with a very low lifetime risk of malignant transformation in general population, but diagnosis is still a challenge. Surgical resection is the treatment of choice even if its close relationship with nerve fibres, from which it arises, threats vagal nerve preservation. We present a case report and a systematic review of literature. All studies on surgical resection of cervical vagal schwannoma have been reviewed. Papers matching the inclusion criteria (topic on surgical removal of cervical vagal schwannoma, English language, full text available) were selected. Fifty-three patients with vagal neck schwannoma submitted to surgery were identified among 22 studies selected. Female/male ratio was 1.5 and median age 44 years. Median diameter was 5 cm (range 2 to 10). Most schwannoma were asymptomatic (68.2%) and received an intracapsular excision (64.9%). Postoperative symptoms were reported in 22.6% of patients. Cervical vagal schwannoma is a benign pathology requiring surgical excision, but frequently postoperative complications can affect patients lifelong, so, surgical indications should be based carefully on the balance between risks and benefits

    The California-Kepler survey. X. The radius gap as a function of stellar mass, metallicity, and age

    Get PDF
    In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in between (the "radius gap"). Several theoretical models of the radius gap predict variation with stellar mass, but testing these predictions is challenging with CKS DR1 due to its limited M⋆ range of 0.8–1.4 M⊙. Here we present CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8 M⊙. We found that the radius gap follows Rp ∝ Pm with m = −0.10 ± 0.03, consistent with predictions of X-ray and ultraviolet- and core-powered mass-loss mechanisms. We found no evidence that m varies with M⋆. We observed a correlation between the average sub-Neptune size and M⋆. Over 0.5–1.4 M⊙, the average sub-Neptune grows from 2.1 to 2.6 R⊕, following RpMα{R}_{p}\propto {M}_{\star }^{\alpha } with α = 0.25 ± 0.03. In contrast, there is no detectable change for super-Earths. These M⋆–Rp trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows linearly with stellar mass according to Mc ≈ 10 M⊕(M⋆/M⊙). There is no significant correlation between sub-Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∼1 Gyr
    corecore