175 research outputs found

    FACT-MNG: tumor site specific web-based outcome instrument for meningioma patients

    Get PDF
    To formulate Functional Assessment of Cancer Therapy-Meningioma (FACT-MNG), a web-based tumor site-specific outcome instrument for assessing intracranial meningioma patients following surgical resection or stereotactic radiosurgery. We surveyed the relevant literature available on intracranial meningioma surgery and subsequent outcomes (38 papers), making note of which, if any, QOL/outcome instruments were utilized. None of the surgveyed papers included QOL assessment specific to tumor site. We subsequently developed questions that were relevant to the signs and symptoms that characterize each of 11 intracranial meningioma sites, and incorporated them into a modified combination of the Functional Assessment of Cancer Therapy-Brain (FACT-BR) and SF36 outcome instruments, thereby creating a new tumor site-specific outcome instrument, FACT-MNG. With outcomes analysis of surgical and radiosurgical treatments becoming more important, measures of the adequacy and success of treatment are needed. FACT-MNG represents a first effort to formalize such an instrument for meningioma patients. Questions specific to tumor site will allow surgeons to better assess specific quality of life issues not addressed in the past by more general questionnaires

    Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

    Get PDF
    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 TeV cross sections

    Get PDF
    Peer reviewe

    Measurements of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections in pp collisions at root s=7 TeV

    Get PDF
    Peer reviewe

    Insulin-like growth factors and related proteins in plasma and cerebrospinal fluids of HIV-positive individuals

    Get PDF
    BACKGROUND: Clinically significant dysregulation of the insulin-like growth factor (IGF) family proteins occurs in HIV-infected individuals, but the details including whether the deficiencies in IGFs contribute to CNS dysfunction are unknown. METHODS: We measured the levels of IGF1, IGF2, IGFBP1, IGFBP2, and IGF2 receptor (IGF2R) in matching plasma and cerebrospinal fluid (CSF) samples of 107 HIV+ individuals from CNS HIV Antiretroviral Therapy Effects Research (CHARTER) and analyzed their associations with demographic and disease characteristics, as well as levels of several soluble inflammatory mediators (TNFα, IL-6, IL-10, IL-17, IP-10, MCP-1, and progranulin). We also determined whether IGF1 or IGF2 deficiency is associated with HIV-associated neurocognitive disorder (HAND) and whether the levels of soluble IGF2R (an IGF scavenging receptor, which we also have found to be a cofactor for HIV infection in vitro) correlate with HIV viral load (VL). RESULTS: There was a positive correlation between the levels of IGF-binding proteins (IGFBPs) and those of inflammatory mediators: between plasma IGFBP1 and IL-17 (β coefficient 0.28, P = 0.009), plasma IGFBP2 and IL-6 (β coefficient 0.209, P = 0.021), CSF IGFBP1 and TNFα (β coefficient 0.394, P < 0.001), and CSF IGFBP2 and TNF-α (β coefficient 0.14, P < 0.001). As IGFBPs limit IGF availability, these results suggest that inflammation is a significant factor that modulates IGF protein expression/availability in the setting of HIV infection. However, there was no significant association between HAND and the reduced levels of plasma IGF1, IGF2, or CSF IGF1, suggesting a limited power of our study. Interestingly, plasma IGF1 was significantly reduced in subjects on non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy (ART) compared to protease inhibitor-based therapy (174.1 ± 59.8 vs. 202.8 ± 47.3 ng/ml, P = 0.008), suggesting a scenario in which ART regimen-related toxicity can contribute to HAND. Plasma IGF2R levels were positively correlated with plasma VL (β coefficient 0.37, P = 0.021) and inversely correlated with current CD4+ T cell counts (β coefficient −0.04, P = 0.021), supporting our previous findings in vitro. CONCLUSIONS: Together, these results strongly implicate (1) an inverse relationship between inflammation and IGF growth factor availability and the contribution of IGF deficiencies to HAND and (2) the role of IGF2R in HIV infection and as a surrogate biomarker for HIV VL. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0288-6) contains supplementary material, which is available to authorized users

    Cell death: protein misfolding and neurodegenerative diseases

    Full text link
    corecore