7 research outputs found

    Studies on the actin-binding protein HS1 in platelets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The platelet cytoskeleton mediates the dramatic change in platelet morphology that takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3 complex is highly regulated by a number of actin-binding proteins including the haematopoietic-specific protein HS1 and its homologue cortactin. The present study investigates the role of HS1 in platelets using HS1<sup>-/- </sup>mice.</p> <p>Results</p> <p>The present results demonstrate that HS1 is not required for platelet activation, shape change or aggregation. Platelets from HS1<sup>-/- </sup>mice spread normally on a variety of adhesion proteins and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable between knock out and littermates and there is no increase in bleeding using the tail bleeding assay.</p> <p>Conclusion</p> <p>This study concludes that HS1 does not play a major role in platelet function. It is possible that a role for HS1 is masked by the presence of cortactin.</p

    Comparative genome analysis of cortactin and HSI:the significance of the F-actin binding repeat domain

    Get PDF
    Background: In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid sequence and structural similarity to hematopoietic lineage cell-specific protein I (HSI) although their functions differ considerable. In this manuscript we describe the genomic organization of these two genes in a variety of species by a combination of cloning and database searches. Based on our analysis, we predict the genesis of the actin-binding repeat domain during evolution.Results: Cortactin homologues exist in sponges, worms, shrimps, insects, urochordates, fishes, amphibians, birds and mammalians, whereas HSI exists in vertebrates only, suggesting that both genes have been derived from an ancestor cortactin gene by duplication. In agreement with this, comparative genome analysis revealed very similar exon-intron structures and sequence homologies, especially over the regions that encode the characteristic highly conserved F-actin-binding repeat domain. Cortactin splice variants affecting this F-actin-binding domain were identified not only in mammalians, but also in amphibians, fishes and birds. In mammalians, cortactin is ubiquitously expressed except in hematopoietic cells, whereas HSI is mainly expressed in hematopoietic cells. In accordance with their distinct tissue specificity, the putative promoter region of cortactin is different from HSI.Conclusions: Comparative analysis of the genomic organization and amino acid sequences of cortactin and HSI provides inside into their origin and evolution. Our analysis shows that both genes originated from a gene duplication event and subsequently HSI lost two repeats, whereas cortactin gained one repeat. Our analysis genetically underscores the significance of the F-actin binding domain in cytoskeletal remodeling, which is of importance for the major role of HSI in apoptosis and for cortactin in cell migration.</p

    Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions

    Get PDF
    Over 90% of all cancers are carcinomas, malignancies derived from cells of epithelial origin. As carcinomas progress, these tumors may lose epithelial morphology and acquire mesenchymal characteristics which contribute to metastatic potential. An epithelial-to-mesenchymal transition (EMT) similar to the process critical for embryonic development is thought to be an important mechanism for promoting cancer invasion and metastasis. Epithelial-to-mesenchymal transitions have been induced in vitro by transient or unregulated activation of receptor tyrosine kinase signaling pathways, oncogene signaling and disruption of homotypic cell adhesion. These cellular models attempt to mimic the complexity of human carcinomas which respond to autocrine and paracrine signals from both the tumor and its microenvironment. Activation of the epidermal growth factor receptor (EGFR) has been implicated in the neoplastic transformation of solid tumors and overexpression of EGFR has been shown to correlate with poor survival. Notably, epithelial tumor cells have been shown to be significantly more sensitive to EGFR inhibitors than tumor cells which have undergone an EMT-like transition and acquired mesenchymal characteristics, including non-small cell lung (NSCLC), head and neck (HN), bladder, colorectal, pancreas and breast carcinomas. EGFR blockade has also been shown to inhibit cellular migration, suggesting a role for EGFR inhibitors in the control of metastasis. The interaction between EGFR and the multiple signaling nodes which regulate EMT suggest that the combination of an EGFR inhibitor and other molecular targeted agents may offer a novel approach to controlling metastasis

    Targeting S100P Inhibits Colon Cancer Growth and Metastasis by Lentivirus-Mediated RNA Interference and Proteomic Analysis

    Get PDF
    S100P was recently found to be overexpressed in a variety of cancers and is considered a potential target for cancer therapy, but the functional role or mechanism of action of S100P in colon cancer is not fully understood. In the present study, we knocked down the gene expression of S100P in colon cancer cells using lentivirus-mediated RNA interference. This step resulted in significant inhibition of cancer cell growth, migration and invasion in vitro and tumor growth and liver metastasis in vivo. Moreover, S100P downstream target proteins were identified by proteomic analysis in colon cancer DLD-1 cells with deletion of S100P. Knockdown of S100P led to downregulation of thioredoxin 1 and β-tubulin and upregulation of Rho guanosine diphosphate (GDP) dissociation inhibitor α (RhoGDIA), all potential therapeutic targets in cancer. Taken together, these findings suggest that S100P plays an important role in colon tumorigenesis and metastasis, and the comprehensive and comparative analyses of proteins associated with S100P could contribute to understanding the downstream signal cascade of S100P, leading to tumorigenesis and metastasis
    corecore