49 research outputs found

    Homocysteine, vitamin B12 and folate levels in premature coronary artery disease

    Get PDF
    BACKGROUND: Hyperhomocysteinemia is known as an independent risk factor of atherosclerosis, but the probable role of hyperhomocysteinemia in premature Coronary Artery Disease (CAD) is not well studied. The aim of this study was to assess the role of hyperhomocysteinemia, folate and Vitamin B12 deficiency in the development of premature CAD. METHODS: We performed an analytical case-control study on 294 individuals under 45 years (225 males and 69 females) who were admitted for selective coronary angiography to two centers in Tehran. RESULTS: After considering the exclusion criteria, a total number of 225 individuals were enrolled of which 43.1% had CAD. The mean age of participants was 39.9 +/- 4.3 years (40.1 +/- 4.2 years in males and 39.4 +/- 4.8 years in females). Compared to the control group, the level of homocysteine measured in the plasma of the male participants was significantly high (14.9 +/- 1.2 versus 20.3 +/- 1.9 micromol/lit, P = 0.01). However there was no significant difference in homocysteine level of females with and without CAD (11.8 +/- 1.3 versus 11.5 ± 1.1 micromol/lit, P = 0.87). Mean plasma level of folic acid and vitamin B12 in the study group were 6.3 +/- 0.2 and 282.5 +/- 9.1 respectively. Based on these findings, 10.7% of the study group had folate deficiency while 26.6% had Vitamin B12 deficiency. Logistic regression analysis for evaluating independent CAD risk factors showed hyperhomocysteinemia as an independent risk factor for premature CAD in males (OR = 2.54 0.95% CI 1.23 to 5.22, P = 0.01). Study for the underlying causes of hyperhomocysteinemia showed that male gender and Vitamin B12 deficiency had significant influence on incidence of hyperhomocysteinemia. CONCLUSION: We may conclude that hyperhomocysteinemia is an independent risk factor for CAD in young patients (bellow 45 years old) – especially in men -and vitamin B12 deficiency is a preventable cause of hyperhomocysteinemia

    Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain

    Get PDF
    BACKGROUND: Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain. METHODOLOGY/PRINCIPAL FINDINGS: Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment. CONCLUSION: Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants

    Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts

    A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease

    Get PDF

    Thoracic trauma: severity of injury in 342 patients

    No full text
    "nBackground: Trauma is a common problem in the world, predominately affecting young adults. Considering the high mortality rate in patients suffering from thoracic trauma, the condition is considered to be extremely important. The purpose of this study was to evaluate the prevalence and the epidemiology of chest trauma as well as the severity of the resulted injury in Tehran, Iran. "nMethods: This prospective, descriptive study was conducted on patients admitted to three medical centers in Tehran during June 1997 and 1998 due to chest trauma. The data on the demographic information of the patients, the mechanism of the trauma and the severity of the injury were collected and analyzed. "nResults: Three hundred forty two patients were admitted to hospital due to thoracic trauma; the majority of which were male adults. Blunt trauma especially secondary to motor vehicle accidents were the most frequent cause of chest injury in the studied patients. In 280(82%) of the cases, another form of trauma was also reported. Chest wall injury was the most common type of thoracic trauma in these patients. The trauma was reported to be mild in 181(53%) of the patients (ISS<7). Only 42(12%) patients required surgical intervention. The overall mortality rate was 14% which was reported to be ISS- related. "nConclusion: Chest injury is quite prevalent among trauma patients and is associated with other injuries in a considerable number of the patients. This type of trauma is associated with a high mortality rate among elderly and therefore needs special attention and care

    Effect of glycated insulin on the blood-brain barrier permeability: An in vitro study

    Full text link
    © 2018 Altered blood-brain barrier (BBB) permeability may contribute to pathogenesis of diabetes-related central nervous system disorders. Considering the presence of glycated insulin in plasma of type 2 diabetic patients, we hypothesized that glycated insulin could induce changes in paracellular permeability in BBB. Therefore, the authors decided to study the effect of glycated insulin on paracellular permeability in a BBB model and the change induced in insulin conformation upon glycation. In this study, the structural modification was examined by fluorescence and circular dichroism spectroscopies and dynamic light scattering. Cell proliferation and production of ROS in astrocytes and HUVEC cells were analyzed by MTT and spectrofluorometric assays, respectively. Apoptosis induction was determined and confirmed by flow cytometry and western blot analyses, respectively. The permeability was measured Lucifer yellow and FITC-Dextran. According to our results, glycated insulin presented altered conformation and more exposed hydrophobic patches than insulin. Formation of oligomeric species and advanced glycated end products (AGEs) were determined. Lower cell viability, higher apoptosis, and more ROS were detected upon treatment of cells with glycated insulin. Finally, glycated insulin led to increased Lucifer yellow and FITC-dextran transportation across the BBB model which could result from ROS producing and apoptosis-inducing activities of AGE-insulin
    corecore