20 research outputs found

    Author Self-Citation in the General Medicine Literature

    Get PDF
    Background: Author self-citation contributes to the overall citation count of an article and the impact factor of the journal in which it appears. Little is known, however, about the extent of self-citation in the general clinical medicine literature. The objective of this study was to determine the extent and temporal pattern of author self-citation and the article characteristics associated with author self-citation. Methodology/Principal Findings: We performed a retrospective cohort study of articles published in three high impact general medical journals (JAMA, Lancet, and New England Journal of Medicine) between October 1, 1999 and March 31, 2000. We retrieved the number and percentage of author self-citations received by the article since publication, as of June 2008, from the Scopus citation database. Several article characteristics were extracted by two blinded, independent reviewers for each article in the cohort and analyzed in multivariable linear regression analyses. Since publication, author self-citations accounted for 6.5 % (95 % confidence interval 6.3–6.7%) of all citations received by the 328 articles in our sample. Selfcitation peaked in 2002, declining annually thereafter. Studies with more authors, in cardiovascular medicine or infectious disease, and with smaller sample size were associated with more author self-citations and higher percentage of author selfcitation (all p#0.01). Conclusions/Significance: Approximately 1 in 15 citations of articles in high-profile general medicine journals are autho

    Hepatitis C virus genotype frequency in Isfahan province of Iran: a descriptive cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). The hepatitis C virus is a small, enveloped, single-stranded, positive sense RNA virus with a large genetic heterogeneity. Isolates have been classified into at least eleven major genotypes, based on a nucleotide sequence divergence of 30-35%. Genotypes 1, 2 and 3 circulate around the world, while other genotypes are mainly restricted to determined geographical areas. Genotype determination of HCV is clinically valuable as it provides important information which can be used to determine the type and duration of therapy and to predict the outcome of the disease.</p> <p>Results</p> <p>Plasma samples were collected from ninety seven HCV RNA positive patients admitted to two large medical laboratory centers in Isfahan province (Iran) from the years 2007 to 2009. Samples from patients were subjected to HCV genotype determination using a PCR based genotyping kit. The frequency of HCV genotypes was determined as follows: genotype 3a (61.2%), genotype 1a (29.5%), genotype 1b (5.1%), genotype 2 (2%) and mixed genotypes of 1a+3a (2%).</p> <p>Conclusion</p> <p>Genotype 3a is the most frequent followed by the genotype 1a, genotype 1b and genotype 2 in Isfahan province, Iran.</p

    β-radiating radionuclides in cancer treatment, novel insight into promising approach.

    Full text link
    Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. β-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel β-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of β-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the β-radiating element, different results could be achieved in cancer cells. It has been shown that β-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the β-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of β-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest
    corecore