7 research outputs found

    Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis

    Get PDF
    Thaxtomin phytotoxins produced by plant-pathogenic Streptomyces species contain a nitro group that is essential for phytotoxicity. The N,N′-dimethyldiketopiperazine core of thaxtomins is assembled from L-phenylalanine and L-4-nitrotryptophan by a nonribosomal peptide synthetase, and nitric oxide synthase–generated NO is incorporated into the nitro group, but the biosynthesis of the nonproteinogenic amino acid L-4-nitrotryptophan is unclear. Here we report that TxtE, a unique cytochrome P450, catalyzes L-tryptophan nitration using NO and O2

    A Pseudo-tRNA Modulates Antibiotic Resistance in Bacillus cereus

    Get PDF
    Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNA(Other), which does not function in translation. Deletion of tRNA(Other) led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNA(Other). This suggested that tRNA(Other) might be expressed as part of a larger RNA, and RACE analysis subsequently confirmed the existence of several RNA species that significantly extend both the 3′ and 5′-ends of tRNA(Other). tRNA(Other) expression levels were found to be responsive to changes in extracellular iron concentration, consistent with the presence of three putative ferric uptake regulator (Fur) binding sites in the 5′ leader region of one of these larger RNAs. Taken together with previous data, this study now suggests that tRNA(Other) may function by providing a tRNA-like structural element within a larger regulatory RNA. These findings illustrate that while integration of genomic islands often leaves tRNA genes intact and functional, in other instances inactivation may generate tRNA-like elements that are then recruited to other functions in the cell

    Emergence and Evolution

    No full text
    The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter

    Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases

    No full text
    corecore