21 research outputs found

    PTEN/MMAC1 expression in melanoma resection specimens

    Get PDF
    PTEN/MMAC1, a tumour suppressor gene located on chromosome 10q23.3, has been found to be deleted in several types of human malignancies. As the chromosomal region 10q22-qter commonly is affected by losses in melanomas, we addressed this gene as tumour suppressor candidate in melanomas. Investigating PTEN/MMAC1 expression at mRNA level by semi-quantitative reverse transcription-polymerase chain reaction, we did not find a statistically significant down-regulation in melanoma resection specimens in comparison to acquired melanocytic nevi from which melanomas quite often are known to arise. Upon immunohistochemistry, PTEN/MMAC1 protein expression in melanomas was not lost. Sequencing the PTEN/MMAC1 cDNAs in 26 melanoma resection specimens (21 primary melanomas, five metastases), we detected three point mutations and two nucleotide deletions which did not represent genetic polymorphisms. With respect to the predicted protein sequences, all three point mutations were silent whereas the two frame shifts at the extreme C-terminus resulted in a loss of the putative PDZ-targeting consensus sequence. As loss of this motif possibly impairs localization and function of PTEN/MMAC1 in the two corresponding primary tumours, alterations of this tumour suppressor protein may participate in some melanomas

    210Pb-226Ra disequilibria in young gas-laden magmas

    No full text
    We present new U- Th- Ra- Pb and supporting data for young lavas from southwest Pacific island arcs, Eyjafjallajökull, Iceland, and Terceira, Azores. The arc lavas have significant U and Ra excesses, whereas those from the ocean islands have moderate Th and Ra excesses, reflecting mantle melting in the presence of a water-rich fluid in the former and mantle melting by decompression in the latter. Differentiation to erupted compositions in both settings appears to have taken no longer than a few millennia. Variations in the (Pb/Ra) 0 values in all settings largely result from degassing processes rather than mineral-melt partitioning. Like most other ocean island basalts, the Terceira basalt has a 210 Pb deficit, which we attribute to ∼8.5 years of steady Rn loss to a CO-rich volatile phase while it traversed the crust. Lavas erupted from water-laden magma systems, including those investigated here, commonly have near equilibrium (Pb/Ra) 0 values. Maintaining these equilibrium values requires minimal persistent loss or accumulation of Rn in a gas phase. We infer that degassing during decompression of water-saturated magmas either causes these magmas to crystallize and stall in reservoirs where they reside under conditions of near stasis, or to quickly rise towards the surface and erupt
    corecore