5 research outputs found
ERAS in Spine Surgery
Enhanced recovery after surgery (ERAS) programs afford the opportunity to remedy several challenges within spine surgery. Increasing surgical demand, rising costs, and variability in outcomes favor the need for development of ERAS recommendations in spine surgery. Therefore, official guideline recommendations will likely be published in the coming year. These guidelines were completed following a comprehensive literature search for each of 16 enhanced recovery topics. The majority of interventions remain similar to ERAS recommendations in other subspecialties, consisting primarily of preoperative education and health optimization strategies, multimodal medication protocols during the intraoperative and postoperative periods, and early mobilization with rehabilitation following surgery. Prior to the advent of published ERAS recommendations in spine surgery, several programs have already successfully implemented elements of enhanced recovery for a variety of spine procedures. The success of these programs provides stronger evidence for the utility of ERAS within spine surgery and demonstrates that full implementation of an ERAS program will likely improve recovery for these patients. International and multidisciplinary collaboration will serve to guide ERAS implementation into the future of spine surgery
The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring
Iatrogenic spinal cord injury is the most feared complication of scoliosis surgery. The importance of combined somatosensory evoked potentials (SEP) and motor evoked potentials (MEP) monitoring during spine surgery is well known. The current authors retrospectively evaluated the results of neurophysiological intraoperative monitoring (IOM) in a large population of patients who underwent surgical treatment for spinal deformity. Intraoperative monitoring of SEPs and transcranial electrical stimulation MEPs (TES-MEP) was performed in 172 successive patients who underwent surgical treatment of idiopathic (128 pts), congenital (15 pts) or syndromic (29 pts) scoliosis. The first 106 patients (Group 1) underwent only SEP monitoring, while the other 66 patients (Group 2) underwent combined SEP and TES-MEP monitoring, when the technique was introduced in the current authors’ institution. Halogenate anaesthesia (Sevoflurane, MAC 0.6–1.2) was performed in Group 1 cases, total intravenous anaesthesia (Propofol infusion, 6–10 mg/kg/h) in Group 2 patients. A neurophysiological “alert” was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for SEPs and of 65% for TES-MEPs compared with baseline. In Group 1, two patients (1.9%) developed postoperative neurologic deficits following surgical correction of spinal deformity, consisting of permanent paraparesis in one case and transient paraparesis secondary to spinal cord ischaemia in the other. Twelve patients presented intraoperative significant changes of neurophysiological parameters that improved following corrective actions by surgeons and anaesthesiologists, and did not show any postoperative neurologic deficits. In ten cases the alert was apparently unrelated to surgical manoeuvres or to pharmacological interventions and no postoperative neurologic deficits were noted. Considering the patients of Group 2, two patients (3.0%) presented transient postoperative neurologic deficits preceded by significant intraoperative changes in SEPs and TES-MEPs. In five cases a transient reduction in the amplitudes of SEPs (1 patient) and/or TES-MEPs (5 patients) was recorded intraoperatively with no postoperative neurologic deficits. In conclusion, in the current series of 172 patients the overall prevalence of postoperative neurologic deficit was 2.3% (4 patients). When combined SEP and TES-MEP monitoring was performed, the sensitivity and specificity of IOM for sensory-motor impairment was 100 and 98%, respectively. Combined SEP and TES-MEP monitoring must be regarded as the neurophysiological standard for intraoperative detection of emerging spinal cord injury during corrective spinal deformity surgery. Early detection affords the surgical team an opportunity to perform rapid intervention to prevent injury progression or possibly to reverse impending neurologic sequelae