252 research outputs found
Micro-stepping control of ultrasonic stepping motors
The ultrasonic stepping motor (USSM) using spatially shifted standing vibrations shows the advantages of high torque, good controllability and open-loop operation. Due to the segmentation problem of piezoelectric materials, the corresponding step size is practically limited. The purpose of this paper is to propose and implement micro-stepping control of this USSM. Different from the available half-step operation, the proposed control simultaneously varies both the combination of phase excitations and the magnitude of applied voltages in such a way that the desired step size can be attained. Digital implementation and experimental verification are given to validate the proposed micro-stepping control.published_or_final_versio
A short cylinder ultrasonic motor with novel excitation mode
This paper presents a short cylinder ultrasonic motor, which is featured by its new structure and novel excitation mode. The stator is composed of two piezoelectric disks and two short cylindrical blocks in which the disks are sandwiched by the blocks to form a special bolted Langevin type transducer. The corresponding vibrations are utilized to produce the driving force. A novel excitation mode is realized which can solve the problem of instability occurred in the conventional excitation mode. By using finite element analysis, the vibration pattern and driving mechanism are simulated. Finally, the proposed motor and its driving circuitry are prototyped to experimentally verify its validity and performance.published_or_final_versio
A two-year randomized clinical trial of chlorhexidine varnish on dental caries in Chinese preschool children
The objective of this study was to assess the effect of six-monthly professional applications of chlorhexidine varnish on the prevention of dental caries in primary molars in Chinese preschool children. In a double-blinded, randomized, placebo-controlled clinical trial, 334 children aged 4-5 years were randomly divided into two groups. Children in the test group received six-monthly applications of a 40% chlorhexidine varnish, and the control children received a placebo varnish. Caries status of the children was assessed by two calibrated examiners at baseline and after 24 months, according to criteria recommended by the World Health Organization. The two-year mean caries increments in the test and the control group children were 1.0 and 1.6 decayed, missing, or filled molar surfaces (dmfs-molar), respectively, a 37.3% reduction (t test, p = 0.036). No side-effects were found. It was concluded that six-monthly applications of chlorhexidine varnish were effective in reducing the incidence of dental caries in primary molars.published_or_final_versio
Biofunctionalization of zinc oxide nanowires for DNA sensory applications
We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device
Targeting colorectal cancer stem cells with inducible caspase-9
Colorectal cancer stem cells (CSCs) drive tumor growth and are suggested to initiate distant metastases. Moreover, colon CSCs are reportedly more resistant to conventional chemotherapy, which is in part due to upregulation of anti-apoptotic Bcl-2 family members. To determine whether we could circumvent this apoptotic blockade, we made use of an inducible active caspase-9 (iCasp9) construct to target CSCs. Dimerization of iCasp9 with AP20187 in HCT116 colorectal cancer cells resulted in massive and rapid induction of apoptosis. In contrast to fluorouracil (5-FU)-induced apoptosis, iCasp9-induced apoptosis was independent of the mitochondrial pathway as evidenced by Bax/Bak double deficient HCT116 cells. Dimerizer treatment of colon CSCs transduced with iCasp9 (CSC-iCasp9) also rapidly induced high levels of apoptosis, while these cells were unresponsive to 5-FU in vitro. More importantly, injection of the dimerizer into mice that developed a colon CSC-iCasp9-induced tumor resulted in a strong decrease in tumor size, an increase in tumor cell apoptosis and a clear loss of CD133+ CSCs. Taken together, our data indicate that dimerization of iCasp9 circumvents the apoptosis block in CSCs, which results in effective tumor regression in vivo
Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach
Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses
An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin
<p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied <it>in vitro </it>but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on <it>in vitro </it>systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the <it>in vitro </it>model system and model toxicant, respectively.</p> <p>Results</p> <p>The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.</p> <p>Conclusions</p> <p>Untargeted profiling of the polar and apolar metabolites of <it>in vitro </it>cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.</p
Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis
<p>Abstract</p> <p>Background</p> <p>Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of <it>hepatocyte growth factor activator inhibitor-1 </it>(<it>HAI-1</it>), <it>HAI-1A</it>, and <it>HAI-1B</it>.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>prostasin </it>and <it>PN-1 </it>in colorectal cancer tissue (n = 116), severe dysplasia (n = 13), mild/moderate dysplasia (n = 93), and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23). A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted <it>HAI-1A </it>and <it>HAI-1B</it>. mRNA levels were normalised to <it>β-actin</it>. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue.</p> <p>Results</p> <p>The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p < 0.001) and severe dysplasia (p < 0.01) and in carcinomas (p < 0.05) compared to normal tissue from the same individual. The mRNA level of <it>PN-1 </it>was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p < 0.001) and elevated in both mild/moderate dysplasia (p < 0.01), severe dysplasia (p < 0.05) and in colorectal cancer tissue (p < 0.001) as compared to normal tissue from the same individual. The mRNA levels of <it>HAI-1A </it>and <it>HAI-1B </it>mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue.</p> <p>Conclusion</p> <p>These results show that the mRNA level of <it>PN-1 </it>is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.</p
White matter microstructure and its relation to clinical features of obsessive–compulsive disorder: findings from the ENIGMA OCD Working Group
Microstructural alterations in cortico-subcortical connections are thought to be present in obsessive–compulsive disorder (OCD). However, prior studies have yielded inconsistent findings, perhaps because small sample sizes provided insufficient power to detect subtle abnormalities. Here we investigated microstructural white matter alterations and their relation to clinical features in the largest dataset of adult and pediatric OCD to date. We analyzed diffusion tensor imaging metrics from 700 adult patients and 645 adult controls, as well as 174 pediatric patients and 144 pediatric controls across 19 sites participating in the ENIGMA OCD Working Group, in a cross-sectional case-control magnetic resonance study. We extracted measures of fractional anisotropy (FA) as main outcome, and mean diffusivity, radial diffusivity, and axial diffusivity as secondary outcomes for 25 white matter regions. We meta-analyzed patient-control group differences (Cohen’s d) across sites, after adjusting for age and sex, and investigated associations with clinical characteristics. Adult OCD patients showed significant FA reduction in the sagittal stratum (d = −0.21, z = −3.21, p = 0.001) and posterior thalamic radiation (d = −0.26, z = −4.57, p < 0.0001). In the sagittal stratum, lower FA was associated with a younger age of onset (z = 2.71, p = 0.006), longer duration of illness (z = −2.086, p = 0.036), and a higher percentage of medicated patients in the cohorts studied (z = −1.98, p = 0.047). No significant association with symptom severity was found. Pediatric OCD patients did not show any detectable microstructural abnormalities compared to controls. Our findings of microstructural alterations in projection and association fibers to posterior brain regions in OCD are consistent with models emphasizing deficits in connectivity as an important feature of this disorder
- …