22 research outputs found

    Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Get PDF
    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than āˆ¼5ā€…nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2, 3, 4, 5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5, 6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2, 3, 4, 5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel

    HIV-1 co-receptor usage:influence on mother-to-child transmission and pediatric infection

    Get PDF
    Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT) of HIV-1. CXCR4-using viral variants are little represented in pregnant women, have an increased although not significant risk of transmission and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the prevalent routes of infection in MTCT, may play an important role of selective barriers

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Ā MJ of fusion for 1.92Ā MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Is HIV-1 evolving to a less virulent form in humans?

    Full text link
    corecore