12 research outputs found

    A hierarchy of determining factors controls motoneuron innervation

    Full text link
    Quail leg buds were grafted in place of chick leg buds or chick wing buds and vice versa at stages 18 to 21 after colonization by muscle precursor cells had been completed. Motor endplate pattern in the plantaris muscle of the grafts was analyzed before hatching by means of esterase and acetylcholinesterase staining techniques. Muscle fibre types were made visual using the myosin ATPase reaction. Investigations are based on the species-specific endplate pattern of the plantaris muscle: multiply innervated fibres in the chick and focally innervated fibres in the quail. Muscle pieces isolated from the adjacent medial gastrocnemius muscle of the grafted legs were histologically examined to judge their species-specific composition. Horseradish peroxidase was injected into the plantaris muscles of both the grafted and the opposite leg as well as in the plantaris muscle of normal quail embryos, in order to be sure that the plantaris muscle of the graft is innervated by appropriate motoneurons. This procedural design offers for the first time a possibility to test experimentally the influences of motoneurons on endplate pattern formation under conditions corresponding to those in normal ontogenesis. It is shown that such appropriate motoneurons of one species which project to the plantaris muscle of the other species dictate the endplate pattern. When the plantaris muscle is innervated by inappropriate motoneurons, the endplate pattern inherent in the muscle primordium itself becomes realized. A sequence of hierarchically acting factors is proposed to bring different results in line. According to this, the neuronally set programme has priority compared with that set in the muscle. This is true for the normal development and might generate the high neuro-muscular specificity. If under experimental conditions the neuronal programme and the peripheral programme differ, the axons and muscle fibres selectively interact with respect to their inherent characteristics and the muscle-specific programme becomes expressed. If there is a lack of a certain axon type, muscle fibres might become innervated by non-corresponding motoneurons which alter the muscle fibre type.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47522/1/429_2004_Article_BF00309770.pd
    corecore