43 research outputs found

    Stability of Tubular Cylinders Conveying Fluid

    No full text

    Transient response analysis of multi-span pipe conveying fluid

    No full text

    Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: Truncation effect without flow and experiments

    No full text
    The response of simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated by using improved mode expansions with respect to those assumed in Parts I and II of the present study. Two cases are studied: (1) shells in vacuo; and (2) shells filled with stagnant water. The improved expansions allow checking the accuracy of the solutions previously obtained and giving definitive results within the limits of Donnell´s non-linear shallow-shell theory. The improved mode expansions include: (1) harmonics of the circumferential mode number n under consideration, and (2) only the principal n, but with harmonics of the longitudinal mode included. The effect of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with 2n circumferential waves is very limited on the trend of non-linearity, but is significant in the response with companion mode participation in the case of lightly damped shells (empty shells). In particular, the travelling wave response appears for much lower vibration amplitudes and presents a frequency range without stable responses, corresponding to a beating phenomenon. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory

    Hydroelastic Behaviour of a Cylindrical Shell

    No full text

    Effect of the geometry on the non-linear vibration of circular cylindrical shells

    No full text
    The non-linear vibration of simply supported, circular cylindrical shells is analysed. Geometric non-linearities due to finite-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory; the effect of viscous structural damping is taken into account. A discretization method based on a series expansion of an unlimited number of linear modes, including axisymmetric and asymmetric modes, following the Galerkin procedure, is developed. Both driven and companion modes are included, allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward mean deflection of the oscillation with respect to the equilibrium position. The fundamental role of the axisymmetric modes is confirmed and the role of higher order asymmetric modes is clarified in order to obtain the correct character of the circular cylindrical shell non-linearity. The effect of the geometric shell characteristics, i.e., radius, length and thickness, on the non-linear behaviour is analysed: very short or thick shells display a hardening non-linearity; conversely, a softening type non-linearity is found in a wide range of shell geometries. (C) 2002 Elsevier Science Ltd. All rights reserved

    Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: Large-amplitude vibrations without flow

    No full text
    The non-linear response of empty and fluid-filled circular cylindrical shells to harmonic excitations is investigated. Both modal and point excitations have been considered. The model is suitable to study simply supported shells with and without axial constraints. Donnell´s non-linear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The radial deflection of the shell is expanded by using a basis of seven linear modes. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion, obtained in Part I of this study, are studied by using a code based on the collocation method. The validation of the present model is obtained by comparison with other authoritative results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. Modes with two longitudinal half-waves are also investigated

    Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid

    No full text
    The non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid, incompressible fluid flow is analyzed. Geometric non-linearities of the shell are considered by using the Donnell's non-linear shallow shell theory. A viscous damping mechanism is considered in order to take into account structural and fluid dissipation. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretized by Galerkin's method and is investigated by using two models: (i) a simpler model obtained by using a base of seven modes for the shell deflection, and (ii) a relatively high-dimensional dynamic model with IS modes. Both models allow travelling-wave response of the shell and shell axisymmetric contraction. Boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. Stability, bifurcation and periodic responses are analyzed by means of the computer code AUTO for the continuation of the solution of ordinary differential equations. Non-stationary motions are analyzed with direct integration techniques. An accurate analysis of the shell response is performed by means of phase space representation, Fourier spectra, Poincare sections and their bifurcation diagrams. A complex dynamical behaviour has been found. The shell bifurcates statically (divergence) in absence of external dynamic loads by using the flow velocity as bifurcation parameter. Under harmonic load a shell conveying flow can give rise to periodic, quasi-periodic and chaotic responses, depending on flow velocity, amplitude and frequency of harmonic excitation. (C) 2002 Elsevier Science Ltd. All rights reserved
    corecore