11 research outputs found

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Altering a Histone H3K4 Methylation Pathway in Glomerular Podocytes Promotes a Chronic Disease Phenotype

    Get PDF
    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state

    p53 family proteins and their regulators: hubs and spokes in tumor suppression

    No full text
    The tumor suppressor p53 is a central hub in a molecular network controlling cell proliferation and death in response to potentially oncogenic conditions, and a wide array of covalent modifications and protein interactions modulate the nuclear and cytoplasmic activities of p53. The p53 relatives, p73 and p63, are entangled in the same regulatory network, being subject at least in part to the same modifications and interactions that convey signals on p53, and actively contributing to the resulting cellular output. The emerging picture is that of an interconnected pathway, in which all p53-family proteins are involved in the response to oncogenic stress and physiological inputs. Therefore, common and specific interactors of p53-family proteins can have a wide effect on function and dysfunction of this pathway. Many years of research have uncovered an impressive number of p53-interacting proteins, but much less is known about protein interactions of p63 and p73. Yet, many interactors may be shared by multiple p53-family proteins, with similar or different effects. In this study we review shared interactors of p53-family proteins with the aim to encourage research into this field; this knowledge promises to unveil regulatory elements that could be targeted by a new generation of molecules, and allow more efficient use of currently available drugs for cancer treatment

    Tumour suppression by p53:a role for the DNA damage response?

    No full text

    p53 in Head and Neck Cancer

    No full text

    Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine

    No full text
    corecore