351 research outputs found
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome
TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML
Somatic TP53 mutations and 17p deletions with genomic loss of TP53 occur in 37% to 46% of acute myeloid leukemia (AML) with adverse-risk cytogenetics and correlate with primary induction failure, high risk of relapse, and dismal prognosis. Herein, we aimed to characterize the immune landscape of TP53-mutated AML and determine whether TP53 abnormalities identify a patient subgroup that may benefit from immunotherapy with flotetuzumab, an investigational CD123 × CD3 bispecific dual-affinity retargeting antibody (DART) molecule. The NanoString PanCancer IO360 assay was used to profile 64 diagnostic bone marrow (BM) samples from patients with TP53-mutated (n = 42) and TP53-wild-type (TP53-WT) AML (n = 22) and 45 BM samples from patients who received flotetuzumab for relapsed/refractory (R/R) AML (15 cases with TP53 mutations and/or 17p deletion). The comparison between TP53-mutated and TP53-WT primary BM samples showed higher expression of IFNG, FOXP3, immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF-κB signaling intermediates in the former cohort and allowed the discovery of a 34-gene immune classifier prognostic for survival in independent validation series. Finally, 7 out of 15 patients (47%) with R/R AML and TP53 abnormalities showed complete responses to flotetuzumab (less than 5% BM blasts) on the CP-MGD006-01 clinical trial (NCT #02152956) and had significantly higher tumor inflammation signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at baseline compared with nonresponders. Patients with TP53 abnormalities who achieved a complete response experienced prolonged survival (median, 10.3 months; range, 3.3-21.3 months). These results encourage further study of flotetuzumab immunotherapy in patients with TP53-mutated AML
Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia
Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous hematological malignancy. Although immunotherapy may be an attractive modality to exploit in patients with AML, the ability to predict the groups of patients and the types of cancer that will respond to immune targeting remains limited. This study dissected the complexity of the immune architecture of AML at high resolution and assessed its influence on therapeutic response. Using 442 primary bone marrow samples from three independent cohorts of children and adults with AML, we defined immune-infiltrated and immune-depleted disease classes and revealed critical differences in immune gene expression across age groups and molecular disease subtypes. Interferon (IFN)–γ–related mRNA profiles were predictive for both chemotherapy resistance and response of primary refractory/relapsed AML to flotetuzumab immunotherapy. Our compendium of microenvironmental gene and protein profiles provides insights into the immuno-biology of AML and could inform the delivery of personalized immunotherapies to IFN-γ–dominant AML subtypes
AMP-Activated Protein Kinase-Regulated Activation of the PGC-1α Promoter in Skeletal Muscle Cells
The mechanisms by which PGC-1α gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1α using AICAR, an activator of AMPK, that is known to increase PGC-1α expression. A 2.2 kb fragment of the human PGC-1α promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-κB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1α promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at −495 within the PGC-1α promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1α promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1α promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1α promoter activity. The USF-1-mediated increase in PGC-1α promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1α gene expression. This could represent a potential therapeutic target to control PGC-1α expression in skeletal muscle
Public Sector Reform and Governance for Adaptation: Implications of New Public Management for Adaptive Capacity in Mexico and Norway
Although many governments are assuming the responsibility of initiating adaptation policy in relation to climate change, the compatibility of “governance-for-adaptation” with the current paradigms of public administration has generally been overlooked. Over the last several decades, countries around the globe have embraced variants of the philosophy of administration broadly called “New Public Management” (NPM) in an effort to improve administrative efficiencies and the provision of public services. Using evidence from a case study of reforms in the building sector in Norway, and a case study of water and flood risk management in central Mexico, we analyze the implications of the adoption of the tenets of NPM for adaptive capacity. Our cases illustrate that some of the key attributes associated with governance for adaptation—namely, technical and financial capacities; institutional memory, learning and knowledge; and participation and accountability—have been eroded by NPM reforms. Despite improvements in specific operational tasks of the public sector in each case, we show that the success of NPM reforms presumes the existence of core elements of governance that have often been found lacking, including solid institutional frameworks and accountability. Our analysis illustrates the importance of considering both longer-term adaptive capacities and short-term efficiency goals in public sector administration reform
Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema
BACKGROUND: Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. OBJECTIVE: To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. METHODS: Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. RESULTS: We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. CONCLUSIONS: Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE
Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions
Protein-protein interactions (PPIs) are essential to most fundamental cellular processes. There has been increasing interest in reconstructing PPIs networks. However, several critical difficulties exist in obtaining reliable predictions. Noticeably, false positive rates can be as high as >80%. Error correction from each generating source can be both time-consuming and inefficient due to the difficulty of covering the errors from multiple levels of data processing procedures within a single test. We propose a novel Bayesian integration method, deemed nonparametric Bayes ensemble learning (NBEL), to lower the misclassification rate (both false positives and negatives) through automatically up-weighting data sources that are most informative, while down-weighting less informative and biased sources. Extensive studies indicate that NBEL is significantly more robust than the classic naïve Bayes to unreliable, error-prone and contaminated data. On a large human data set our NBEL approach predicts many more PPIs than naïve Bayes. This suggests that previous studies may have large numbers of not only false positives but also false negatives. The validation on two human PPIs datasets having high quality supports our observations. Our experiments demonstrate that it is feasible to predict high-throughput PPIs computationally with substantially reduced false positives and false negatives. The ability of predicting large numbers of PPIs both reliably and automatically may inspire people to use computational approaches to correct data errors in general, and may speed up PPIs prediction with high quality. Such a reliable prediction may provide a solid platform to other studies such as protein functions prediction and roles of PPIs in disease susceptibility
Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study
BACKGROUND: Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. METHODS: The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. RESULTS: Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. CONCLUSION: This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds
- …