329 research outputs found

    Minimally invasive strabismus surgery (MISS) for inferior obliquus recession

    Get PDF
    PURPOSE: To present a novel, minimally invasive strabismus surgery (MISS) technique for inferior obliquus recessions. METHODS: Graded MISS inferior obliquus recessions were performed in 20 eyes of 15 patients by applying two small conjunctival cuts, one at the insertion of inferior obliquus and another where the scleral anchoring of the muscle occurred. RESULTS: The amount of recession was 12.2 +/- 2.3 mm (range 6 to 14 mm). The vertical deviation, which was measured in 25 degrees of adduction, decreased from preoperatively 12.8 degrees +/- 5.6 degrees to 2.7 degrees +/- 2.2 degrees (p 0.1). In one eye (2.5%) the two cuts had to be joined because of excessive bleeding. Binocular vision improved in eight patients, remained unchanged in six patients, and decreased from 30 to 60 arcsec in one patient (p > 0.1). Conjunctival and lid swelling were hardly visible on the first postoperative day in primary gaze position in 10/20 (50%) of eyes. Five of the eyes (25%) had mild and five (25%) moderate visibility of surgery. One patient out of 15 (7%) needed repeat surgery because of insufficient reduction of the sursoadduction within the first 6 months. The dose-effect relationship 6 months postoperatively for an accommodative near target at 25 degrees adduction was 0.83 degrees +/- 0.43 degrees per mm of recession. CONCLUSIONS: This study demonstrates that small-incision, minimal dissection inferior obliquus graded recessions are feasible and effective to improve ocular alignment in patients with strabismus sursoadductorius

    The Minimum Detectable Difference (MDD) Concept for Establishing Trust in Nonsignificant Results: A Critical Review

    Get PDF
    Current regulatory guidelines for pesticide risk assessment recommend that nonsignificant results should be complemented by the minimum detectable difference (MDD), a statistical indicator that is used to decide whether the experiment could have detected biologically relevant effects. We review the statistical theory of the MDD and perform simulations to understand its properties and error rates. Most importantly, we compare the skill of the MDD in distinguishing between true and false negatives (i.e., type II errors) with 2 alternatives: the minimum detectable effect (MDE), an indicator based on a post hoc power analysis common in medical studies; and confidence intervals (CIs). Our results demonstrate that MDD and MDE only differ in that the power of the MDD depends on the sample size. Moreover, although both MDD and MDE have some skill in distinguishing between false negatives and true absence of an effect, they do not perform as well as using CI upper bounds to establish trust in a nonsignificant result. The reason is that, unlike the CI, neither MDD nor MDE consider the estimated effect size in their calculation. We also show that MDD and MDE are no better than CIs in identifying larger effects among the false negatives. We conclude that, although MDDs are useful, CIs are preferable for deciding whether to treat a nonsignificant test result as a true negative, or for determining an upper bound for an unknown true effect.Environ Toxicol Chem2020;00:1-15. (c) 2020 The Authors.Environmental Toxicology and Chemistrypublished by Wiley Periodicals LLC on behalf of SETAC

    Hemispheric Asymmetries in Speech Perception: Sense, Nonsense and Modulations

    Get PDF
    Background: The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.Methodology: A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech) which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET) was used to compare which brain regions were active when participants listened to the different sounds.Conclusions: Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible) was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features

    Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2.

    Get PDF
    Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels

    Are Compression Stockings an Effective Treatment for Orthostatic Presyncope?

    Get PDF
    Syncope, or fainting, affects approximately 6.2% of the population, and is associated with significant comorbidity. Many syncopal events occur secondary to excessive venous pooling and capillary filtration in the lower limbs when upright. As such, a common approach to the management of syncope is the use of compression stockings. However, research confirming their efficacy is lacking. We aimed to investigate the effect of graded calf compression stockings on orthostatic tolerance

    Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM

    Get PDF
    The β-barrel assembly machinery (BAM) is a ~203 kDa complex of five proteins (BamA-E) which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a ‘lateral gating’ motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex, and interactions between BamA, B, D, and E and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM

    Regional genome transcriptional response of adult mouse brain to hypoxia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain.</p> <p>Result</p> <p>Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O<sub>2</sub>) and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF), the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54%) had at least one hepatic nuclear receptor 4A (HNF4A) binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia.</p> <p>Conclusion</p> <p>Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.</p

    Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus

    Get PDF
    The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved
    • …
    corecore