33 research outputs found

    Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones

    Get PDF
    AIMS: Innate mechanisms of inter-organ protection underlie the phenomenon of remote ischaemic preconditioning (RPc) in which episode(s) of ischaemia and reperfusion in tissues remote from the heart reduce myocardial ischaemia/reperfusion injury. The uncertainty surrounding the mechanism(s) underlying RPc centres on whether humoral factor(s) produced during ischaemia/reperfusion of remote tissue and released into the systemic circulation mediate RPc, or whether a neural signal is required. While these two hypotheses may not be incompatible, one approach to clarify the potential role of a neural pathway requires targeted disruption or activation of discrete central nervous substrate(s). METHODS AND RESULTS: Using a rat model of myocardial ischaemia/reperfusion injury in combination with viral gene transfer, pharmaco-, and optogenetics, we tested the hypothesis that RPc cardioprotection depends on the activity of vagal pre-ganglionic neurones and consequently an intact parasympathetic drive. For cell-specific silencing or activation, neurones of the brainstem dorsal motor nucleus of the vagus nerve (DVMN) were targeted using viral vectors to express a Drosophila allatostatin receptor (AlstR) or light-sensitive fast channelrhodopsin variant (ChIEF), respectively. RPc cardioprotection, elicited by ischaemia/reperfusion of the limbs, was abolished when DVMN neurones transduced to express AlstR were silenced by selective ligand allatostatin or in conditions of systemic muscarinic receptor blockade with atropine. In the absence of remote ischaemia/reperfusion, optogenetic activation of DVMN neurones transduced to express ChIEF reduced infarct size, mimicking the effect of RPc. CONCLUSION: These data indicate a crucial dependence of RPc cardioprotection against ischaemia/reperfusion injury upon the activity of a distinct population of vagal pre-ganglionic neurones

    Prenatal nicotine exposure recruits an excitatory pathway to brainstem parasympathetic cardioinhibitory neurons during hypoxia/hypercapnia in the rat: implications for sudden infant death syndrome.

    No full text
    Maternal cigarette smoking and prenatal nicotine exposure increase the risk for sudden infant death syndrome (SIDS) by 2- to 4-fold, yet despite adverse publicity, nearly one of four pregnant women smoke tobacco. Infants who succumb to SIDS typically experience a severe bradycardia that precedes or is accompanied by centrally mediated life-threatening apneas and gasping. Although the causes of the apnea and bradycardia prevalent in SIDS victims are unknown, it has been hypothesized that these fatal events are exaggerated cardiorespiratory responses to hypoxia or hypercapnia. Changes in heart rate are primarily determined by the activity of cardiac vagal neurons (CVNs) in the brainstem. In this study, we tested whether hypoxia/hypercapnia evokes synaptic pathways to CVNs and whether these cardiorespiratory interactions are altered by pre-natal exposure to nicotine. Spontaneous rhythmic inspiratory-related activity was recorded from the hypoglossal rootlet of 700- to 800-μm medullary sections. CVNs were identified in this preparation by retrograde fluorescent labeling, and excitatory synaptic inputs to CVNs were isolated and studied using patch-clamp electrophysiologic techniques. Hypoxia/hypercapnia did not elicit an increase in excitatory neurotransmission to CVNs in unexposed animals, but in animals that were exposed to nicotine in the prenatal period, hypoxia/hypercapnia recruited an excitatory neurotransmission to CVNs. This study establishes a likely neurochemical mechanism for the exaggerated decrease in heart rate in response to hypoxia/hypercapnia that occurs in SIDS victims. Copyright © 2005 International Pediatric Research Foundation, Inc
    corecore