89 research outputs found

    The Serine 814 of TRPC6 Is Phosphorylated under Unstimulated Conditions

    Get PDF
    TRPC are nonselective cation channels involved in calcium entry. Their regulation by phosphorylation has been shown to modulate their routing and activity. TRPC6 activity increases following phosphorylation by Fyn, and is inhibited by protein kinase G and protein kinase C. A previous study by our group showed that TRPC6 is phosphorylated under unstimulated conditions in a human embryonic kidney cells line (HEK293). To investigate the mechanism responsible for this phosphorylation, we used a MS/MS approach combined with metabolic labeling and showed that the serine at position 814 is phosphorylated in unstimulated cells. The mutation of Ser814 into Ala decreased basal phosphorylation but did not modify TRPC6 activity. Even though Ser814 is within a consensus site for casein kinase II (CK2), we showed that CK2 is not involved in the phosphorylation of TRPC6 and does not modify its activity. In summary, we identified a new basal phosphorylation site (Ser814) on TRPC6 and showed that CK2 is not responsible for the phosphorylation of this site

    S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton

    Get PDF
    BACKGROUND: Deregulation of the phosphatidylinositol 3-kinases (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway plays a central role in tumor formation and progression, providing validated targets for cancer therapy. S9, a hybrid of alpha-methylene-gamma-lactone and 2-phenyl indole compound, possessed potent activity against this pathway. METHODOLOGY/PRINCIPAL FINDINGS: Effects of S9 on PI3K-Akt-mTOR pathway were determined by Western blot, immunofluorescence staining and in vitro kinas assay. The interactions between tubulin and S9 were investigated by polymerization assay, CD, and SPR assay. The potential binding modes between S9 and PI3K, mTOR or tubulin were analyzed by molecular modeling. Anti-tumor activity of S9 was evaluated in tumor cells and in nude mice bearing human cancer xenografts. S9 abrogated EGF-activated PI3K-Akt-mTOR signaling cascade and Akt translocation to cellular membrane in human tumor cells. S9 possessed inhibitory activity against both PI3K and mTOR with little effect on other tested 30 kinases. S9 also completely impeded hyper-phosphorylation of Akt as a feedback of inhibition of mTOR by rapamycin. S9 unexpectedly arrested cells in M phase other than G1 phase, which was distinct from compounds targeting PI3K-Akt-mTOR pathway. Further study revealed that S9 inhibited tubulin polymerization via binding to colchicine-binding site of tubulin and resulted in microtubule disturbance. Molecular modeling indicated that S9 could potentially bind to the kinase domains of PI3K p110alpha subunit and mTOR, and shared similar hydrophobic interactions with colchicines in the complex with tubulin. Moreover, S9 induced rapid apoptosis in tumor cell, which might reflect a synergistic cooperation between blockade of both PI3-Akt-mTOR signaling and tubulin cytoskeleton. Finally, S9 displayed potent antiproliferative activity in a panel of tumor cells originated from different tissue types including drug-resistant cells and in nude mice bearing human tumor xenografts. CONCLUSIONS/SIGNIFICANCE: Taken together, S9 targets both PI3K-Akt-mTOR signaling and microtubule cytoskeleton, which combinatorially contributes its antitumor activity and provides new clues for anticancer drug design and development

    Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease

    Get PDF
    Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease

    Interdomain Interactions Control Ca2+-Dependent Potentiation in the Cation Channel TRPV4

    Get PDF
    Several Ca2+-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca2+-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca2+-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca2+, displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca2+-permeable channels

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis

    Get PDF
    The advent of co-culture approaches has allowed researchers to more accurately model the behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also been used as a means of investigating both the development and repair of the epidermis, in more relevant conditions than simple two-dimensional culture, but without the use of animals. More recently, by varying the cell types used and adjusting the composition of the matrix components, this physiological system can be adapted to allow the study of interactions between tumour cells and their surrounding stroma, particularly with regards to how such interactions regulate invasion. Here we provide a summary of the major themes involved in tumour progression and consider the evolution of the approaches used to study cancer cell behaviour. Finally, we review how organotypic models have facilitated the study of several key pathways in cancer development and invasion, and speculate on the exciting future roles for these models in cancer research

    PI3Kinase signaling in glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common primary tumor of the CNS in the adult. It is characterized by exponential growth and diffuse invasiveness. Among many different genetic alterations in GBM, e.g., mutations of PTEN, EGFR, p16/p19 and p53 and their impact on aberrant signaling have been thoroughly characterized. A major barrier to develop a common therapeutic strategy is founded on the fact that each tumor has its individual genetic fingerprint. Nonetheless, the PI3K pathway may represent a common therapeutic target to most GBM due to its central position in the signaling cascade affecting proliferation, apoptosis and migration. The read-out of blocking PI3K alone or in combination with other cancer pathways should mainly focus, besides the cytostatic effect, on cell death induction since sublethal damage may induce selection of more malignant clones. Targeting more than one pathway instead of a single agent approach may be more promising to kill GBM cells

    The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore