25 research outputs found

    An algebraic interpretation of the Wheeler-DeWitt equation

    Get PDF
    We make a direct connection between the construction of three dimensional topological state sums from tensor categories and three dimensional quantum gravity by noting that the discrete version of the Wheeler-DeWitt equation is exactly the pentagon for the associator of the tensor category, the Biedenharn-Elliott identity. A crucial role is played by an asymptotic formula relating 6j-symbols to rotation matrices given by Edmonds.Comment: 10 pages, amstex, uses epsf.tex. New version has improved presentatio

    Shape in an Atom of Space: Exploring quantum geometry phenomenology

    Full text link
    A phenomenology for the deep spatial geometry of loop quantum gravity is introduced. In the context of a simple model, an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde

    A Lorentzian Signature Model for Quantum General Relativity

    Get PDF
    We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.Comment: 22 pages, latex, amsfonts, Xypic. Version 3: improved presentation. Version 2 is a major revision with explicit formulae included for the evaluation of relativistic spin networks and the computation of examples which have finite value

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    REFERENCES

    Full text link
    The sequences that can be generated by this encoder are identi-cal to those generated by the industry standard, the IBM (1,7) code. The statistical properties are identical as well. As far as the channel is concerned, the performance of the new code should be equivalent to that of the IBM code. If any difference exists, it would have to be caused by the mapping between user bits and channel bits. However, there is no indication that any such performance difference exists

    Micro-optimization of floating-point operations

    Full text link

    Biodiversity

    Full text link
    corecore