7,363 research outputs found
Magnetization reversals in a disk-shaped small magnet with an interface
We consider a nanodisk possessing two coupled materials with different
ferromagnetic exchange constant. The common border line of the two media passes
at the disk center dividing the system exactly in two similar half-disks. The
vortex core motion crossing the interface is investigated with a simple
description based on a two-dimensional model which mimics a very thin real
material with such a line defect. The main result of this study is that,
depending on the magnetic coupling which connects the media, the vortex core
can be dramatically and repeatedly flipped from up to down and vice versa by
the interface. This phenomenon produces burst-like emission of spin waves each
time the switching process takes place.Comment: 11 pages, 10 figure
Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities
Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal
On topological spin excitations on a rigid torus
We study Heisenberg model of classical spins lying on the toroidal support,
whose internal and external radii are and , respectively. The isotropic
regime is characterized by a fractional soliton solution. Whenever the torus
size is very large, , its charge equals unity and the soliton
effectively lies on an infinite cylinder. However, for R=0 the spherical
geometry is recovered and we obtain that configuration and energy of a soliton
lying on a sphere. Vortex-like configurations are also supported: in a ring
torus () such excitations present no core where energy could blow up. At
the limit we are effectively describing it on an infinite
cylinder, where the spins appear to be practically parallel to each other,
yielding no net energy. On the other hand, in a horn torus () a singular
core takes place, while for (spindle torus) two such singularities
appear. If is further diminished until vanish we recover vortex
configuration on a sphere.Comment: 11 pages, 9 figure
Magnetic monopole and string excitations in a two-dimensional spin ice
We study the magnetic excitations of a square lattice spin-ice recently
produced in an artificial form, as an array of nanoscale magnets. Our analysis,
based upon the dipolar interaction between the nanomagnetic islands, correctly
reproduces the ground-state observed experimentally. In addition, we find
magnetic monopole-like excitations effectively interacting by means of the
usual Coulombic plus a linear confining potential, the latter being related to
a string-like excitation binding the monopoles pairs, what indicates that the
fractionalization of magnetic dipoles may not be so easy in two dimensions.
These findings contrast this material with the three-dimensional analogue,
where such monopoles experience only the Coulombic interaction. We discuss,
however, two entropic effects that affect the monopole interactions: firstly,
the string configurational entropy may loose the string tension and then, free
magnetic monopoles should also be found in lower dimensional spin ices;
secondly, in contrast to the string configurational entropy, an entropically
driven Coulomb force, which increases with temperature, has the opposite effect
of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
How hole defects modify vortex dynamics in ferromagnetic nanodisks
Defects introduced in ferromagnetic nanodisks may deeply affect the structure
and dynamics of stable vortex-like magnetization. Here, analytical techniques
are used for studying, among other dynamical aspects, how a small cylindrical
cavity modify the oscillatory modes of the vortex. For instance, we have
realized that if the vortex is nucleated out from the hole its gyrotropic
frequencies are shifted below. Modifications become even more pronounced when
the vortex core is partially or completely captured by the hole. In these
cases, the gyrovector can be partially or completely suppressed, so that the
associated frequencies increase considerably, say, from some times to several
powers. Possible relevance of our results for understanding other aspects of
vortex dynamics in the presence of cavities and/or structural defects are also
discussed.Comment: 9 pages, 4 page
- …