4,747 research outputs found

    Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice

    Full text link
    We study a modified frustrated dipolar array recently proposed by M\"{o}ller and Moessner [Phys. Rev. Lett. \textbf{96}, 237202 (2006)], which is based on an array manufactured lithographically by Wang \emph{et al.} [Nature (London) \textbf{439}, 303 (2006)] and consists of introducing a height offset hh between islands (dipoles) pointing along the two different lattice directions. The ground-states and excitations are studied as a function of hh. We have found, in qualitative agreement with the results of M\"{o}ller and Moessner, that the ground-state changes for h>h1h>h_{1}, where h1=0.444ah_{1}= 0.444a (aa is the lattice parameter or distance between islands). In addition, the excitations above the ground-state behave like magnetic poles but confined by a string, whose tension decreases as hh increases, in such a way that for hh1h\approx h_1 its value is around 20 times smaller than that for h=0h=0. The system exhibits an anisotropy in the sense that the string tension and magnetic charge depends significantly on the directions in which the monopoles are separated. In turn, the intensity of the magnetic charge abruptly changes when the monopoles are separated along the direction of the longest axis of the islands. Such a gap is attributed to the transition from the anti to the ferromagnetic ground-state when h=h1h=h_1.Comment: 6 pages, 7 figures. Published versio

    Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder

    Get PDF
    We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)1/kαS(k) \sim 1/k^{\alpha} with α>0\alpha > 0. Moura and Lyra [Phys. Rev. Lett. {\bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided α>2\alpha > 2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.Comment: 4 pages, 5 figure

    Scattering and Trapping of Nonlinear Schroedinger Solitons in External Potentials

    Full text link
    Soliton motion in some external potentials is studied using the nonlinear Schr\"odinger equation. Solitons are scattered by a potential wall. Solitons propagate almost freely or are trapped in a periodic potential. The critical kinetic energy for reflection and trapping is evaluated approximately with a variational method.Comment: 9 pages, 7 figure

    Critical wave-packet dynamics in the power-law bond disordered Anderson Model

    Full text link
    We investigate the wave-packet dynamics of the power-law bond disordered one-dimensional Anderson model with hopping amplitudes decreasing as HnmnmαH_{nm}\propto |n-m|^{-\alpha}. We consider the critical case (α=1\alpha=1). Using an exact diagonalization scheme on finite chains, we compute the participation moments of all stationary energy eigenstates as well as the spreading of an initially localized wave-packet. The eigenstates multifractality is characterized by the set of fractal dimensions of the participation moments. The wave-packet shows a diffusive-like spread developing a power-law tail and achieves a stationary non-uniform profile after reflecting at the chain boundaries. As a consequence, the time-dependent participation moments exhibit two distinct scaling regimes. We formulate a finite-size scaling hypothesis for the participation moments relating their scaling exponents to the ones governing the return probability and wave-function power-law decays

    Nambu monopoles interacting with lattice defects in two-dimensional artificial square spin ice

    Full text link
    The interactions between an excitation (similar to a pair of Nambu monopoles) and a lattice defect are studied in an artificial two-dimensional square spin ice. This is done by considering a square array of islands containing only one island different from all others. This difference is incorporated in the magnetic moment (spin) of the "imperfect" island and several cases are studied, including the special situation in which this distinct spin is zero (vacancy). We have shown that the two extreme points of a malformed island behave like two opposite magnetic charges. Then, the effective interaction between a pair of Nambu monopoles with the deformed island is a problem involving four magnetic charges (two pairs of opposite poles) and a string. We also sketch the configuration of the field lines of these four charges to confirm this picture. The influence of the string on this interaction decays rapidly with the string distance from the defect.Comment: 7 pages, 13 figure

    On thermalization of magnetic nano-arrays at fabrication

    Full text link
    We propose a model to predict and control the statistical ensemble of magnetic degrees of freedom in Artificial Spin Ice (ASI) during thermalized adiabatic growth. We predict that as-grown arrays are controlled by the temperature at fabrication and by their lattice constant, and that they can be described by an effective temperature. If the geometry is conducive to a phase transition, then the lowest temperature phase is accessed in arrays of lattice constant smaller than a critical value, which depends on the temperature at deposition. Alternatively, for arrays of equal lattice constant, there is a temperature threshold at deposition and the lowest temperature phase is accessed for fabrication temperatures {\it larger rather than smaller} than this temperature threshold. Finally we show how to define and control the effective temperature of the as-grown array and how to measure critical exponents directly. We discuss the role of kinetics at the critical point, and applications to experiments, in particular to as-grown thermalized square ASI, and to magnetic monopole crystallization in as-grown honeycomb ASI.Comment: 14 pages, 2 figures. A theoretical approach to experimental results reported in: Morgan J P, Stein A, Langridge S and Marrows C (2010) Nature Physics 7 7
    corecore