6,509 research outputs found

    Radio-loudness in black hole transients: evidence for an inclination effect

    Get PDF
    Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.Comment: 16 pages, 6 figures, accepted for pubblication on MNRA

    A connection between accretion states and the formation of ultra-relativistic outflows in a neutron star X-ray binary

    Full text link
    The nearby accreting neutron star binary Sco X-1 is the closest example of ongoing relativistic jet production at high Eddington ratios. Previous radio studies have revealed that alongside mildly relativistic, radio-emitting ejecta, there is at times a much faster transfer of energy from the region of the accretion flow along the jet. The nature of this ultrarelativistic flow remains unclear and while there is some evidence for a similar phenomenon in other systems which might contain neutron stars, it has never been observed in a confirmed black hole system. We have compared these previous radio observations with a new analysis of simultaneous X-ray observations which were performed with the RXTE mission. We find that the ejection of the ultra-relativistic flow seems to be associated with the simultaneous appearance of two particular types of quasi-periodic oscillations in the X-ray power spectrum. In contrast, the mildly relativistic, radio-emitting outflows may be associated with flat-topped broad band noise in the X-ray power spectrum. This is the first time a link, albeit tentative, has been found between these mysterious unseen flows and the accretion flow from which they are launched.Comment: 14 pages, 7 figures, accepted for publication in MNRA

    Non-Gaussian features of primordial magnetic fields in power-law inflation

    Get PDF
    We show that a conformal-invariance violating coupling of the inflaton to electromagnetism produces a cross correlation between curvature fluctuations and a spectrum of primordial magnetic fields. According to this model, in the case of power-law inflation, a primordial magnetic field is generated with a nearly flat power spectrum and rms amplitude ranging from nG to pG. We study the cross correlation, a three-point function of the curvature perturbation and two powers of the magnetic field, in real and momentum space. The cross-correlation coefficient, a dimensionless ratio of the three-point function with the curvature perturbation and magnetic field power spectra, can be several orders of magnitude larger than expected as based on the amplitude of scalar metric perturbations from inflation. In momentum space, the cross-correlation peaks for flattened triangle configurations, and is three orders of magnitude larger than the squeezed triangle configuration. These results suggest likely methods for distinguishing the observational signatures of the model.Comment: 15 pages, 2 figure

    Testing reflection features in 4U 1705-44 with XMM-Newton, BeppoSAX and RXTE in the hard and soft state

    Get PDF
    We use data of the bright atoll source 4U 1705-44 taken with XMM-Newton, BeppoSAX and RXTE both in the hard and in the soft state to perform a self-consistent study of the reflection component in this source. Although the data from these X-ray observatories are not simultaneous, the spectral decomposition is shown to be consistent among the different observations, when the source flux is similar. We therefore select observations performed at similar flux levels in the hard and soft state in order to study the spectral shape in these two states in a broad band (0.1-200 keV) energy range, with good energy resolution, and using self-consistent reflection models. These reflection models provide a good fit for the X-ray spectrum both in the hard and in the soft state in the whole spectral range. We discuss the differences in the main spectral parameters we find in the hard and the soft state, respectively, providing evidence that the inner radius of the optically thick disk slightly recedes in the hard state.Comment: Accepted for publication in A&A, 20 pages, 12 figure
    corecore