13 research outputs found
Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma
We examined a panel of sporadic breast carcinomas for loss of heterozygosity (LOH) in a 10-cM interval on chromosome 10 known to encompass the PTEN gene. We detected allele loss in 27 of 70 breast tumour DNAs. Fifteen of these showed loss limited to a subregion of the area studied. The most commonly deleted region was flanked by D10S215 and D10S541 and encompasses the PTEN locus. We used a combination of denaturing gradient gel electrophoresis and single-strand conformation polymorphism analyses to investigate the presence of PTEN mutations in tumours with LOH in this region. We did not detect mutations of PTEN in any of these tumours. Our data show that, in sporadic breast carcinoma, loss of heterozygosity of the PTEN locus is frequent, but mutation of PTEN is not. These results are consistent with loss of another unidentified tumour suppressor in this region in sporadic breast carcinoma. © 1999 Cancer Research Campaig
Paleolithic Y-haplogroup heritage predominates in a Cretan highland plateau
The island of Crete, credited by some historical scholars as a central crucible of western civilization, has been under continuous archeological investigation since the second half of the nineteenth century. In the present work, the geographic stratification of the contemporary Cretan Y-chromosome gene pool was assessed by high-resolution haplotyping to investigate the potential imprints of past colonization episodes and the population substructure. In addition to analyzing the possible geographic origins of Y-chromosome lineages in relatively accessible areas of the island, this study includes samples from the isolated interior of the Lasithi Plateau--a mountain plain located in eastern Crete. The potential significance of the results from the latter region is underscored by the possibility that this region was used as a Minoan refugium. Comparisons of Y-haplogroup frequencies among three Cretan populations as well as with published data from additional Mediterranean locations revealed significant differences in the frequency distributions of Y-chromosome haplogroups within the island. The most outstanding differences were observed in haplogroups J2 and R1, with the predominance of haplogroup R lineages in the Lasithi Plateau and of haplogroup J lineages in the more accessible regions of the island. Y-STR-based analyses demonstrated the close affinity that R1a1 chromosomes from the Lasithi Plateau shared with those from the Balkans, but not with those from lowland eastern Crete. In contrast, Cretan R1b microsatellite-defined haplotypes displayed more resemblance to those from Northeast Italy than to those from Turkey and the Balkans
Map integration at human chromosome 10: molecular and cytogenetic analysis of a chromosome-specific somatic cell hybrid panel and genomic clones, based on a well-supported genetic map
Well-characterized, chromosome-specific somatic cell hybrid panels are powerful tools for the analysis of the human genome. We have characterized a panel of human x hamster somatic cell hybrids retaining fragments of human chromosome 10 by fluorescence in situ hybridization and associated them to genetic markers. Most of the hybrids were generated by the radiation-reduction method, starting from a chromosome 10-specific monochromosomal hybrid, whereas some were collected from hybrids retaining chromosome 10-specific fragments as a result of spontaneous in vitro rearrangements. PCR was used to score the retention of 57 microsatellite markers evenly distributed along a well-supported framework genetic map containing 149 loci uniquely placed at 69 anchor points (odds exceeding 1,000:1), with an average spacing of 2.8 cM. As an additional resource for genomic studies involving human chromosome 10, we report the cytogenetic localization of a series of YAC and PAC clones recognized by at least one genetic marker. Somatic cell hybrids provide a powerful source of partial chromosome paints useful for detailed clinical cytogenetic and primate chromosome evolution investigations. Furthermore, correlation of the above physical, genetic, and cytogenetic data contribute to an emerging consensus map of human chromosome 10
European Gene Mapping Project (EUROGEM): breakpoint panels for human chromosomes based on the CEPH reference families. Centre d'Etude du Polymorphisme Humain.
International audienceMeiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels were constructed at both a low-resolution, useful for a first-pass localization, and high-resolution, for a more precise placement. The availability of such panels will reduce the number of genotyping experiments necessary to order new polymorphisms with respect to existing genetic markers. This paper shows only a representative sample of the breakpoints detected. The complete data are available on the World Wide Web (URL http:/(/)www.icnet.uk/axp/hgr/eurogem++ +/HTML/data.html) or by anonymous ftp (ftp.gene.ucl.ac.uk in/pub/eurogem/maps/breakpoints)
Identification and characterization of a novel human brain-specific gene, homologous to S. scrofa tmp83.5, in the chromosome 10q24 critical region for temporal lobe epilepsy and spastic paraplegia
We describe the structure, genomic organization, and some transcription features of a human brain-specific gene previously localized to the genomic region involved in temporal lobe epilepsy and spastic paraplegia on chromosome 10q24. The gene, which consists of six exons disseminated over 16 kb of genomic DNA, is highly homologous to the porcine tmp83.5 gene and encodes a putative transmembrane protein of 141 amino acids. Unlike its porcine homolog, from which two mRNAs with different 5'-sequences are transcribed, the human gene apparently encodes three mRNA species with 3'-untranslated regions of different sizes. Mutation analysis of its coding sequence in families affected with temporal lobe epilepsy or spastic paraplegia linked to 10q24 do not support the involvement of this gene in either diseases. (C) 2002 Elsevier Science B.V. All rights reserved
The future of metabolomics in ELIXIR.
Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases