196 research outputs found
Ordination of the herbaceous stratum of savanna in the Nylsvley Nature Reserve, South Africa
The purpose of the study was to determine the ecological status of representative herbaceous species with respect to environmental factors and subhabitats of which the spatial and temporal pattern could be elucidated.The basal cover of the herbaceous vegetation was determined by means of the wheel-point method. Frequency data in each of 200 1 m2 contiguous quadrats were ordinated by means of detrended correspondence analysis (DECORANA).The distribution of the species along the first axis is a function of conditions representing an open habitat with full sunlight and somewhat drier conditions to the left and a denser and/or shrub habitat with more shade and wetter, more favourable conditions to the right. The gradient along the second axis is that of undisturbed conditions with more perennials at the lower end to disturbed conditions with more annuals at the upper end. From the scatter diagrams it can be concluded that the herbaceous layer is functionally homogeneous, that it represents a seral stage and that Eragrostis pallens and Digitaria eriantha, both with the highest basal cover in the study area, are representative of a seral stage rather than of the climax. The lack of pattern in the herbaceous layer can be attributed mainly to the large number of annual and perennial pioneer and disturbance-indicating species. In a similar study Whittaker et al. (in press) concluded that the woody vegetation dominates the pattern
Mechanical phase shifters for coherent acoustic radiation in the stridulating wings of crickets: the plectrum mechanism
Male crickets produce stridulatory songs using engaged tegmina (forewings): a plectrum on the left sweeps along a tooth row on the right. During stridulation, the plectrum moves across the teeth and vibrations are amplified by the surrounding cells and veins, resonating at the frequency of tooth impacts. The advance of the plectrum on the file is controlled by an escapement mechanism so that passing each single tooth generates one wave of a highly tonal signal. Both tegmina must oscillate in phase to avoid destructive interference. But as each plectrum-tooth contact begins, the right and left tegmina react in opposite oscillatory directions. A mechanical phase shifter is part of the left tegmen and compensates to achieve wing oscillation synchrony. We use a new technique to simulate plectrum-on-file interactions: in combination with laser vibrometry, this technique assessed plectrum mechanics in the cricket Gryllus bimaculatus. Using an excised teneral file, shaped like a partial gear and moved by a motor, and a microscan Doppler laser vibrometer, plectrum and left-tegmen mechanics were explored. The results show that plectrum and harp oscillate with a phase difference of ca. 156 deg., a shift rather than a complete phase inversion (180 deg.). This phase shift occurs at the site of a large wing vein (possibly A3). Plectrum and harp vibrate with similar fundamental frequency, therefore, plectrum torsion resonant frequency is important for maintaining vibration coherence. The mechanical aspects involved in this partial phase inversion are discussed with respect to the escapement mechanism. The plectrum mechanics and its implications in katydid stridulation are also considered
First principles simulations of direct coexistence of solid and liquid aluminium
First principles calculations based on density functional theory, with
generalised gradient corrections and ultrasoft pseudopotentials, have been used
to simulate solid and liquid aluminium in direct coexistence at zero pressure.
Simulations have been carried out on systems containing up to 1000 atoms for 15
ps. The points on the melting curve extracted from these simulations are in
very good agreement with previous calculations, which employed the same
electronic structure method but used an approach based on the explicit
calculation of free energies [L. Vo\v{c}adlo and D. Alf\`e, Phys. Rev. B, {\bf
65}, 214105 (2002).]Comment: To appear in Phys. Rev.
One loop photon-graviton mixing in an electromagnetic field: Part 2
In part 1 of this series compact integral representations had been obtained
for the one-loop photon-graviton amplitude involving a charged spin 0 or spin
1/2 particle in the loop and an arbitrary constant electromagnetic field. In
this sequel, we study the structure and magnitude of the various polarization
components of this amplitude on-shell. Explicit expressions are obtained for a
number of limiting cases.Comment: 31 pages, 3 figure
The position of graptolites within Lower Palaeozoic planktic ecosystems.
An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms
Exploring interactions of plant microbiomes
A plethora of microbial cells is present in every gram of soil, and microbes are found extensively in plant and animal tissues. The mechanisms governed by microorganisms in the regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the "microbial tissue" is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant microbiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize features of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant-associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can cope with the development of a more sustainable agriculture
Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae
This review highlighted the following: (i) pathogenic mechanism of the thermostable direct hemolysin produced by Vibrio parahaemolyticus, especially on its cardiotoxicity, (ii) heat-labile and heat-stable enterotoxins produced by enterotoxigenic Escherichia coli, especially structure–activity relationship of heat-stable enterotoxin, (iii) RNA N-glycosidase activity of Vero toxins (VT1 and VT2) produced by enterohemorrhagic Escherichia coli O157:H7, (iv) discovery of Vibrio cholerae O139, (v) isolation of new variant of Vibrio cholerae O1 El Tor that carries classical ctxB, and production of high concentration of cholera toxin by these strains, and (vi) conversion of viable but nonculturable (VBNC) Vibrio cholerae to culturable state by co-culture with eukaryotic cells
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
- …