5,809 research outputs found
Doping evolution of spin and charge excitations in the Hubbard model
To shed light on how electronic correlations vary across the phase diagram of
the cuprate superconductors, we examine the doping evolution of spin and charge
excitations in the single-band Hubbard model using determinant quantum Monte
Carlo (DQMC). In the single-particle response, we observe that the effects of
correlations weaken rapidly with doping, such that one may expect the random
phase approximation (RPA) to provide an adequate description of the
two-particle response. In contrast, when compared to RPA, we find that
significant residual correlations in the two-particle excitations persist up to
hole and electron doping (the range of dopings achieved in the
cuprates). These fundamental differences between the doping evolution of
single- and multi-particle renormalizations show that conclusions drawn from
single-particle processes cannot necessarily be applied to multi-particle
excitations. Eventually, the system smoothly transitions via a
momentum-dependent crossover into a weakly correlated metallic state where the
spin and charge excitation spectra exhibit similar behavior and where RPA
provides an adequate description.Comment: 5 pages, 4 figures, plus supplementary materia
A balancing act: Evidence for a strong subdominant d-wave pairing channel in
We present an analysis of the Raman spectra of optimally doped based on LDA band structure calculations and the
subsequent estimation of effective Raman vertices. Experimentally a narrow,
emergent mode appears in the () Raman spectra only below
, well into the superconducting state and at an energy below twice the
energy gap on the electron Fermi surface sheets. The Raman spectra can be
reproduced quantitatively with estimates for the magnitude and momentum space
structure of the s pairing gap on different Fermi surface sheets, as
well as the identification of the emergent sharp feature as a
Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a
subdominant channel. The binding energy of the exciton relative
to the gap edge shows that the coupling strength in this subdominant
channel is as strong as 60% of that in the dominant
channel. This result suggests that may be the dominant pairing
symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure
Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)
Using ab initio thermodynamics we compile a phase diagram for the surface of
Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto
ignored polar termination with octahedral iron and oxygen forming a wave-like
structure along the [110]-direction is identified as the lowest energy
configuration over a broad range of oxygen gas-phase conditions. This novel
geometry is confirmed in a x-ray diffraction analysis. The stabilization of the
Fe3O4(001)-surface goes together with dramatic changes in the electronic and
magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure
Doping Evolution of Oxygen K-edge X-ray Absorption Spectra in Cuprate Superconductors
We study oxygen K-edge x-ray absorption spectroscopy (XAS) and investigate
the validity of the Zhang-Rice singlet (ZRS) picture in overdoped cuprate
superconductors. Using large-scale exact diagonalization of the three-orbital
Hubbard model, we observe the effect of strong correlations manifesting in a
dynamical spectral weight transfer from the upper Hubbard band to the ZRS band.
The quantitative agreement between theory and experiment highlights an
additional spectral weight reshuffling due to core-hole interaction. Our
results confirm the important correlated nature of the cuprates and elucidate
the changing orbital character of the low-energy quasi-particles, but also
demonstrate the continued relevance of the ZRS even in the overdoped region.Comment: Original: 5 pages, 4 figures. Replaced: 6 pages and 4 figures, with
updated title and conten
Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis
Social parasitism by honeybee workers (Apis mellifera capensis Escholtz): host finding and resistance of hybrid host colonies
We studied possible host finding and resistance mechanisms of host colonies in the context of social parasitism by Cape honeybee (Apis mellifera capensis) workers. Workers often join neighboring colonies by drifting, but long-range drifting (dispersal) to colonies far away from the maternal nests also rarely occurs. We tested the impact of queenstate and taxon of mother and host colonies on drifting and dispersing of workers and on the hosting of these workers in A. m. capensis, A. m. scutellata, and their natural hybrids. Workers were paint-marked according to colony and reintroduced into their queenright or queenless mother colonies. After 10 days, 579 out of 12,034 labeled workers were recaptured in foreign colonies. We found that drifting and dispersing represent different behaviors, which were differently affected by taxon and queenstate of both mother and host colonies. Hybrid workers drifted more often than A. m. capensis and A. m. scutellata. However, A. m. capensis workers dispersed more often than A. m. scutellata and the hybrids combined, and A. m. scutellata workers also dispersed more frequently than the hybrids. Dispersers from queenright A. m. capensis colonies were more often found in queenless host colonies and vice versa, indicating active host searching and/or a queenstate-discriminating guarding mechanism. Our data show that A. m. capensis workers disperse significantly more often than other races of A. mellifera, suggesting that dispersing represents a host finding mechanism. The lack of dispersal in hybrids and different hosting mechanisms of foreign workers by hybrid colonies may also be responsible for the stability of the natural hybrid zone between A. m. capensis and A. m. scutellata
Rational Design of a Chalcogenopyrylium-Based Surface-Enhanced Resonance Raman Scattering-Nanoprobe with Attomolar Sensitivity
High sensitivity and specificity are two desirable features in biomedical imaging. Raman imaging has surfaced as a promising optical modality that offers both. Here, we report the design and synthesis of a group of near infrared absorbing 2-thienyl-substituted chalcogenopyrylium dyes tailored to have high affinity for gold. When adsorbed onto gold nanoparticles, these dyes produce biocompatible SERRS-nanoprobes with attomolar limits of detection amenable to ultrasensitive in vivo multiplexed tumor and disease marker detection
Effective calculation of LEED intensities using symmetry-adapted functions
The calculation of LEED intensities in a spherical-wave representation can be substantially simplified by symmetry relations. The wave field around each atom is expanded in symmetry-adapted functions where the local point symmetry of the atomic site applies. For overlayer systems with more than one atom per unit cell symmetry-adapted functions can be used when the division of the crystal into monoatomic subplanes is replaced by division into subplanes containing all symmetrically equivalent atomic positions
- …