7,026 research outputs found
M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets
We perform three-dimensional numerical simulations of stellar winds of
early-M dwarf stars. Our simulations incorporate observationally reconstructed
large-scale surface magnetic maps, suggesting that the complexity of the
magnetic field can play an important role in the angular momentum evolution of
the star, possibly explaining the large distribution of periods in field dM
stars, as reported in recent works. In spite of the diversity of the magnetic
field topologies among the stars in our sample, we find that stellar wind
flowing near the (rotational) equatorial plane carries most of the stellar
angular momentum, but there is no preferred colatitude contributing to mass
loss, as the mass flux is maximum at different colatitudes for different stars.
We find that more non-axisymmetric magnetic fields result in more asymmetric
mass fluxes and wind total pressures (defined as the sum of
thermal, magnetic and ram pressures). Because planetary magnetospheric sizes
are set by pressure equilibrium between the planet's magnetic field and , variations of up to a factor of in (as found in the
case of a planet orbiting at several stellar radii away from the star) lead to
variations in magnetospheric radii of about 20 percent along the planetary
orbital path. In analogy to the flux of cosmic rays that impact the Earth,
which is inversely modulated with the non-axisymmetric component of the total
open solar magnetic flux, we conclude that planets orbiting M dwarf stars like
DT~Vir, DS~Leo and GJ~182, which have significant non-axisymmetric field
components, should be the more efficiently shielded from galactic cosmic rays,
even if the planets lack a protective thick atmosphere/large magnetosphere of
their own.Comment: 16 pages, 9 figures, to appear in MNRA
Modeling the RV jitter of early M dwarfs using tomographic imaging
In this paper we show how tomographic imaging (Zeeman Doppler Imaging, ZDI)
can be used to characterize stellar activity and magnetic field topologies,
ultimately allowing to filter out the radial velocity (RV) activity jitter of
M-dwarf moderate rotators. This work is based on spectropolarimetric
observations of a sample of five weakly-active early M-dwarfs (GJ 205, GJ 358,
GJ 410, GJ479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin i and
RV jitters in the range 1-2 km/s and 2.7-10.0 m/s rms respectively. Using a
modified version of ZDI applied to sets of phase-resolved Least-Squares- Decon-
volved (LSD) profiles of unpolarized spectral lines, we are able to
characterize the distribution of active regions at the stellar surfaces. We
find that darks spots cover less than 2% of the total surface of the stars of
our sample. Our technique is e cient at modeling the rotationally mod- ulated
component of the activity jitter, and succeeds at decreasing the amplitude of
this com- ponent by typical factors of 2-3 and up to 6 in optimal cases. From
the rotationally modulated time-series of circularly polarized spectra and with
ZDI, we also reconstruct the large-scale magnetic field topology. These fields
suggest that bi-stability of dynamo processes observed in active M dwarfs may
also be at work for moderately active M dwarfs. Comparing spot distributions
with field topologies suggest that dark spots causing activity jitter
concentrate at the magnetic pole and/or equator, to be confirmed with future
data on a larger sample.Comment: 34 pages, accepted for publication in MNRA
Quadrupolar Order in Isotropic Heisenberg Models with Biquadratic Interaction
Through Quantum Monte Carlo simulation, we study the biquadratic-interaction
model with the SU(2) symmetry in two and three dimensions. The zero-temperature
phase diagrams for the two cases are identical and exhibit an intermediate
phase characterized by finite quadrupole moment, in agreement with mean-field
type arguments and the semi-classical theory. In three dimensions, we
demonstrate that the model in the quadrupolar regime has a phase transition at
a finite temperature. In contrast to predictions by mean-field theories, the
phase transition to the quadrupolar phase turns out to be of the second order.
We also examine the critical behavior in the two marginal cases with the SU(3)
symmetry.Comment: 4 pages 5 figure
Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph
From observations collected with the ESPaDOnS spectropolarimeter at the
Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on
the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and
circular polarisation signatures detected in photospheric lines can be
interpreted as caused by cool spots and magnetic regions at the surface of the
star. The large-scale field is of moderate strength and highly complex;
moreover, both the spot distribution and the magnetic field show significant
variability on a timescale of only one week, as a likely result of strong
differential rotation. Both properties make V2247Oph very different from the
(more massive) prototypical cTTS BPTau; we speculate that this difference
reflects the lower mass of V2247Oph.
During our observations, V2247Oph was in a low-accretion state, with emission
lines showing only weak levels of circular polarisation; we nevertheless find
that excess emission apparently concentrates in a mid-latitude region of strong
radial field, suggesting that it is the footpoint of an accretion funnel.
The weaker and more complex field that we report on V2247Oph may share
similarities with those of very-low-mass late-M dwarfs and potentially explain
why low-mass cTTSs rotate on average faster than intermediate mass ones. These
surprising results need confirmation from new independent data sets on V2247Oph
and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure
Biocorrosion of mild steel in drinking water conditions and disinfection
[Excerpt] Introduction: Corrosion in drinking water distribution system is a costly phenomenon, mainly due to the
replacement of altered pipes. Bio..corrosion is also a problem in term of public health because of the
suspected protection brought by the corroded surface to potentially harmful microorganisms,
especially bacteria. The protection effect of corrosion is particularly relevant in the presence of
disinfectant. In drinking water are present the conditions leading to microbialy induced corrosion: bacteria and metal-containing substrata joined closely together as biofilm attached to distribution system pipe walls. [...]info:eu-repo/semantics/publishedVersio
High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared
We report on high-efficiency superconducting nanowire single-photon detectors
based on amorphous WSi and optimized at 1064 nm. At an operating temperature of
1.8 K, we demonstrated a 93% system detection efficiency at this wavelength
with a dark noise of a few counts per second. Combined with cavity-enhanced
spontaneous parametric down-conversion, this fiber-coupled detector enabled us
to generate narrowband single photons with a heralding efficiency greater than
90% and a high spectral brightness of
photons/(smWMHz). Beyond single-photon generation at large rate,
such high-efficiency detectors open the path to efficient multiple-photon
heralding and complex quantum state engineering
A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects
International audienceWe have investigated the magnetoelectric (ME) effect in layered composite rings subjected to circumferential AC magnetic fields and DC magnetic fields in radial, axial or circumferential directions. Bilayer samples were obtained combining different grades of commercial Mn-Zn ferrites or Ni-Zn ferrites with commercial lead zirconate titanate (PZT). Mn-Zn ferrites with low magnetostriction saturation () and low magneto-crystalline anisotropy constants show high ME capabilities when associated with PZT in ring structures. In certain conditions, these ME effects are higher than those obtained with Terfenol-D/PZT composites in the same layered ring structure. Magnetostrictive and mechanical characterizations have given results that explain these high ME performances. Nevertheless, Mn-Zn ferrite/PZT composites exhibit voltages responses with low linearity especially at high signal level. Based on the particular structure of the ME device, a method to decrease the nonlinear harmonic distortion of the ME voltages is proposed. Harmonic distortion analysis of ME voltages measured in different configurations allows us to explain the phenomenon
Activity and Magnetic Field Structure of the Sun-Like Planet Hosting Star HD 1237
We analyse the magnetic activity characteristics of the planet hosting
Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We
find evidence of rotational modulation of the magnetic longitudinal field
measurements consistent with our ZDI analysis, with a period of 7 days. We
investigate the effect of customising the LSD mask to the line depths of the
observed spectrum and find that it has a minimal effect on shape of the
extracted Stokes V profile but does result in a small increase in the S/N
( 7%). We find that using a Milne-Eddington solution to describe the
local line profile provides a better fit to the LSD profiles in this slowly
rotating star, which also impacts the recovered ZDI field distribution. We also
introduce a fit-stopping criterion based on the information content (entropy)
of the ZDI maps solution set. The recovered magnetic field maps show a strong
(+90 G) ring-like azimuthal field distribution and a complex radial field
dominating at mid latitudes (45 degrees). Similar magnetic field maps are
recovered from data acquired five months apart. Future work will investigate
how this surface magnetic field distribution impacts the coronal magnetic field
and extended environment around this planet-hosting star.Comment: Accepted for publication in A&
- âŠ