336 research outputs found

    Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: a key factor to the unrestrained cell proliferation?

    Get PDF
    The hydrolysis of sphingomyelin generates key molecules regulating cell growth and inducing apoptosis. Data from animal cancer models support an inhibitory role for this pathway in the malignant transformation of the colonic mucosa. In the intestinal tract, a sphingomyelinase with an optimum alkaline pH has been identified. We recently found that the activity of alkaline sphingomyelinase is significantly decreased in colorectal adenocarcinomas, indicating a potential anticarcinogenic role of this enzyme. To further examine whether the reduction of sphingomyelinase is present already in the premalignant state of neoplastic transformation, we measured sphingomyelinase activities in patients with familial adenomatous polyposis (FAP) and in sporadic colorectal tubulovillous adenomas. Tissue samples were taken from adenomas and surrounding macroscopically normal mucosa from 11 FAP patients operated with ileorectal anastomosis, from three FAP patients with intact colon, from 13 patients with sporadic colorectal adenomas and from 12 controls. Activities of acid, neutral and alkaline sphingomyelinase were measured together with alkaline phosphatase. In FAP adenoma tissue, alkaline sphingomyelinase activity was reduced by 90% compared to controls (P < 0.0001), acid sphingomyelinase by 66% (P < 0.01) and neutral sphingomyelinase by 54% (P < 0.05). Similar reductions were found in the surrounding mucosa. In sporadic adenoma tissue, only alkaline sphingomyelinase was reduced significantly, by 57% (P < 0.05). Alkaline phosphatase was not changed in FAP adenomas, but decreased in the sporadic adenomas. We conclude that the markedly reduced levels of alkaline sphingomyelinase activities in FAP adenomas and in the surrounding mucosa may be a pathogenic factor that can lead to unrestrained cell proliferation and neoplastic transformation. © 1999 Cancer Research Campaig

    Mutations of the ÎČ- and Îł-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas

    Get PDF
    ÎČ-catenin forms complexes with Tcf and Lef-1 and functions as a transcriptional activator in the Wnt signalling pathway. Although recent investigations have been focused on the role of the adenomatous polyposis coli (APC)/ ÎČ-catenin/Tcf pathway in human tumorigenesis, there have been very few reports on mutations of the ÎČ-catenin gene in a variety of tumour types. Using PCR and single-strand conformational polymorphism analysis, we examined 93 lung, 9 breast, 6 kidney, 19 cervical and 7 ovarian carcinoma cell lines for mutations in exon 3 of the ÎČ-catenin gene. In addition, we tested these same samples for mutations in the NH2-terminal regulatory region of the Îł-catenin gene. Mutational analysis for the entire coding region of ÎČ-catenin cDNA was also undertaken in 20 lung, 9 breast, 5 kidney and 6 cervical carcinoma cell lines. Deletion of most ÎČ-catenin coding exons was confirmed in line NCI-H28 (lung mesothelioma) and a silent mutation at codon 214 in exon 5 was found in HeLa (cervical adenocarcinoma). A missense mutation at codon 19 and a silent mutation at codon 28 in the NH2-terminal regulatory region of the Îł-catenin gene were found in H1726 (squamous cell lung carcinoma) and H1048 (small cell lung carcinoma), respectively. Neither deletions nor mutations of these genes were detected in the other cell lines examined. These results suggest that ÎČ- and Îł-catenins are infrequent mutational targets during development of human lung, breast, kidney, cervical and ovarian carcinomas. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Voluntary exercise inhibits intestinal tumorigenesis in ApcMin/+ mice and azoxymethane/dextran sulfate sodium-treated mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies suggest that physical activity reduces the risk of colon cancer in humans. Results from animal studies, however, are inconclusive. The present study investigated the effects of voluntary exercise on intestinal tumor formation in two different animal models, <it>Apc</it><sup>Min/+ </sup>mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice.</p> <p>Methods</p> <p>In Experiments 1 and 2, five-week old female <it>Apc</it><sup>Min/+ </sup>mice were either housed in regular cages or cages equipped with a running wheel for 6 weeks (for mice maintained on the AIN93G diet; Experiment 1) or 9 weeks (for mice on a high-fat diet; Experiment 2). In Experiment 3, male CF-1 mice at 6 weeks of age were given a dose of AOM (10 mg/kg body weight, i.p.) and, 12 days later, 1.5% DSS in drinking fluid for 1 week. The mice were then maintained on a high-fat diet and housed in regular cages or cages equipped with a running wheel for 16 weeks.</p> <p>Results</p> <p>In the <it>Apc</it><sup>Min/+ </sup>mice maintained on either the AIN93G or the high-fat diet, voluntary exercise decreased the number of small intestinal tumors. In the AOM/DSS-treated mice maintained on a high-fat diet, voluntary exercise also decreased the number of colon tumors. In <it>Apc</it><sup>Min/+ </sup>mice, voluntary exercise decreased the ratio of serum insulin like growth factor (IGF)-1 to IGF binding protein (BP)-3 levels. It also decreased prostaglandin E<sub>2 </sub>and nuclear ïżœïżœ-catenin levels, but increased E-cadherin levels in the tumors.</p> <p>Conclusion</p> <p>These results indicate hat voluntary exercise inhibited intestinal tumorigenesis in <it>Apc</it><sup>Min/+ </sup>mice and AOM/DSS-treated mice, and the inhibitory effect is associated with decreased IGF-1/IGFBP-3 ratio, aberrant ÎČ-catenin signaling, and arachidonic acid metabolism.</p

    Mutations in the WTX - gene are found in some high-grade microsatellite instable (MSI-H) colorectal cancers

    Get PDF
    Background: Genetically, colorectal cancers (CRCs) can be subdivided into tumors with chromosomal instability (CIN) or microsatellite instability (MSI). In both types of CRCs genes that are involved in the degradation of beta-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli) is affected in most cases, high grade MSI (MSI-H) CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (beta-CATENIN) gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome) was discovered as another gene involved in the destruction of beta-CATENIN. As the WTX-gene harbors a short T(6)-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of beta-CATENIN in human CRCs. Methods: DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV) and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE). Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T(6)-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T(5)-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT-) PCR and FCE. Results: In our cohort of 632 metastatic CRCs (UICCIV) we identified 41 MSI-H cases (6.5%). Two of the 41 MSI-H cases (4.8%) displayed a frameshift mutation in the T(6)-repeat resulting in a T(5) sequence. Only one case, a male patient, expressed the mutated WTX gene while being wild type for all other investigated genes. Conclusion: Mutations in the WTX-gene might compromise the function of the beta-CATENIN destruction complex in only a small fraction of MSI-H CRCs thus contributing to the process of carcinogenesis

    Nuclear ÎČ-catenin expression is closely related to ulcerative growth of colorectal carcinoma

    Get PDF
    Although most colorectal cancer develops based on the adenoma–adenocarcinoma sequence, morphologically, colorectal cancer is not a homogeneous disease entity. Generally, there are two distinct morphological types: polypoid and ulcerative colorectal tumours. Previous studies have demonstrated that K-ras codon 12 mutations are preferentially associated with polypoid growth of colorectal cancer; however, little is known about the molecular mechanism that determines ulcerative growth of colorectal cancer. ÎČ-catenin complex plays a critical role both in tumorigenesis and morphogenesis. We examined the differential expression of ÎČ-catenin and its related factors among different types of colorectal cancer in order to determine any relationship with gross tumour morphology. Immunohistochemical staining of ÎČ-catenin, E-cadherin and MMP-7 was performed on 51 tumours, including 26 polypoid tumours and 25 ulcerative tumours. Protein truncation tests and single-strand conformational polymorphism for mutation of the adenomatous polyposis coli tumour suppressor gene, as well as single-strand conformational polymorphism for the mutation of ÎČ-catenin exon 3 were also done. Nuclear expression of ÎČ-catenin was observed in 18 out of 25 (72%) cases of ulcerative colorectal cancer and seven out of 26 (26.9%) cases of polypoid colorectal cancer. A significant relationship of nuclear ÎČ-catenin expression with ulcerative colorectal cancer was found (P<0.001). However, this finding was independent of adenomatous polyposis coli tumour suppressor gene mutation and E-cadherin expression. Together with previous data, we propose that different combinations of genetic alterations may underlie different morphological types of colorectal cancer. These findings should be taken into consideration whenever developing a new genetic diagnosis or therapy for colorectal cancer

    Apoptosis Inducing Effect of Plumbagin on Colonic Cancer Cells Depends on Expression of COX-2

    Get PDF
    Plumbagin, a quinonoid found in the plants of the Plumbaginaceae, possesses medicinal properties. In this study we investigated the anti-proliferative and apoptotic activity of plumbagin by using two human colonic cancer cell lines, HT29 and HCT15. IC50 of Plumbagin for HCT15 and HT29 cells (22.5 ”M and 62.5 ”M, respectively) were significantly different. To study the response of cancer cells during treatment strategies, cells were treated with two different concentrations, 15 ”M, 30 ”M for HCT15 and 50 ”M, 75 ”M for HT29 cells. Though activation of NFÎșB, Caspases-3, elevated levels of TNF-α, cytosolic Cytochrome C were seen in both HCT15 cells HT29 treated with plumbagin, aberrant apoptosis with decreased level of pEGFR, pAkt, pGsk-3ÎČ, PCNA and Cyclin D1was observed only in 15 ”M and 30 ”M plumbagin treated HCT15 and 75 ”M plumbagin treated HT29 cells. This suggests that plumbagin induces apoptosis in both HCT15 cells and HT29 treated, whereas, proliferation was inhibited only in 15 ”M and 30 ”M plumbagin treated HCT15 and 75 ”M plumbagin treated HT29 cells, but not in 50 ”M plumbagin treated HT29 cells. Expression of COX-2 was decreased in 75 ”M plumbagin treated HT29 cells when compared to 50 ”M plumbagin treated HT29 cells, whereas HCT15 cells lack COX. Hence the observed resistance to induction of apoptosis in 50 ”M plumbagin treated HT29 cells are attributed to the expression of COX-2. In conclusion, plumbagin induces apoptosis in colonic cancer cells through TNF-α mediated pathway depending on expression of COX-2 expression

    Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 1: Human papillomavirus-mediated carcinogenesis

    Get PDF
    High-risk human papillomavirus (HPV) E6 and E7 oncoproteins are essential factors for HPV-induced carcinogenesis, and for the maintenance of the consequent neoplastic growth. Cellular transformation is achieved by complex interaction of these oncogenes with several cellular factors of cell cycle regulation including p53, Rb, cyclin-CDK complexes, p21 and p27. Both persistent infection with high-risk HPV genotypes and immune dysregulation are associated with increased risk of HPV-induced squamous cell carcinoma

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers

    Get PDF
    Similar to findings in colorectal cancers, it has been suggested that disruption of the adenomatous polyposis coli (APC)/ÎČ-catenin pathway may be involved in breast carcinogenesis. However, somatic mutations of APC and ÎČ- catenin are infrequently reported in breast cancers, in contrast to findings in colorectal cancers. To further explore the role of the APC/ÎČ-catenin pathway in breast carcinogenesis, we investigated the status of APC gene promoter methylation in primary breast cancers and in their non-cancerous breast tissue counterparts, as well as mutations of the APC and ÎČ- catenin genes. Hypermethylation of the APC promoter CpG island was detected in 18 of 50 (36%) primary breast cancers and in none of 21 non-cancerous breast tissue samples, although no mutations of the APC and ÎČ- catenin were found. No significant associations between APC promoter hypermethylation and patient age, lymph node metastasis, oestrogen and progesterone receptor status, size, stage or histological type of tumour were observed. These results indicate that APC promoter CpG island hypermethylation is a cancer-specific change and may be a more common mechanism of inactivation of this tumour suppressor gene in primary breast cancers than previously suspected. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • 

    corecore