27,264 research outputs found

    The Grothendieck Group of a Quantum Projective Space Bundle

    Full text link
    We compute the Grothendieck group K_0 of non-commutative analogues of quantum projective space bundles. Our results specialize to give the Grothendieck groups of non-commutative analogues of projective spaces, and specialize to recover the Grothendieck group of a usual projective space bundle over a regular noetherian separated scheme. As an application we develop an intersection theory for the quantum ruled surfaces defined by Van den Bergh.Comment: This paper is being replaced so I can correct the metadata, the title! I (Paul) spelled Grothendieck's name incorrectly. The paper is being reposted with the journal reference and doi added to the metadat

    Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma

    Full text link
    Numerous reports have been made of features, either in emission or absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally interpreted in the context of Galactic neutron star models as cyclotron line emission and e+−e−e^+ - e^- annihilation features, the recent demonstration that the majority of GRBs lie at cosmological distances make these explanations unlikely. In this letter, we adopt a relativistic fireball model for cosmological GRBs in which dense, metal rich blobs or filaments of plasma are entrained in the relativistic outflow. In the context of this model, we investigate the conditions under which broadband features, similar to those detected, can be observed. We find a limited region of parameter space capable of reproducing the observed GRB spectra. Finally, we discuss possible constraints further high-energy spectral observations could place on fireball model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages, 2 figure

    Coexistence of superconductivity and antiferromagnetism in self-doped bilayer t-t'-J model

    Full text link
    A self-doped bilayer t-t'-J model of an electron- and a hole-doped planes is studied by the slave-boson mean-field theory. A hopping integral between the differently doped planes, which are generated by a site potential, are renormalized by the electron-electron correlation. We find coexistent phases of antiferromagnetic (AFM) and superconducting orders, although the magnitudes of order parameters become more dissimilar in the bilayer away from half-filling. Fermi surfaces (FS's) with the AFM order show two pockets around the nodal and the anti-nodal regions. These results look like a composite of electron- and hole-doped FS's. In the nodal direction, the FS splitting is absent even in the bilayer system, since one band is flat due to the AFM order.Comment: 6 pages, 4 figure

    Anomalous infrared spectra of hybridized phonons in type-I clathrate Ba8_8Ga16_{16}Ge30_{30}

    Full text link
    The optical conductivity spectra of the rattling phonons in the clathrate Ba8_8Ga16_{16}Ge30_{30} are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of a Ba(2)2+^{2+} ion consists of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and the enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.Comment: Submitted to JPS
    • …
    corecore