366 research outputs found

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree

    Full text link
    The effect of microwave processing on the characteristics of kiwifruit puree was evaluated by applying various gentle treatments. Different combinations of microwave power/processing time were applied, with power among 200-1,000 W and time among 60-340 s, and various sensory and instrumental measurements were performed with the aim of establishing correlations and determining which instrumental parameters were the most appropriate to control the quality of kiwi puree. The water and soluble solids of the product, 83 and 14/100 g sample, respectively, did not change due to treatments. For sensory assessment, an expert panel was previously trained to describe the product. Fourteen descriptors were defined, but only the descriptors 'typical kiwifruit colour', 'tone', 'lightness', 'visual consistency' and 'typical taste' were significant to distinguish between kiwifruit puree samples. The instrumental analysis of samples consisted in measuring consistency, viscosity, colour and physicochemical characteristics of the treated and fresh puree. Applying intense treatments (600 W-340 s, 900 W-300 s and 1,000 W-200 s) through high power or long treatment periods or a combination of these factors, mainly affects the consistency (flow distance decreased from 5. 9 to 3. 4 mm/g sample), viscosity (increased from 1. 6 to 2. 5 Pa/s), colour (maximun ¿E was 6 U) and taste of the product. As a result, samples were thicker and with an atypical flavour and kiwifruit colour due to increased clarity (L* increased from 38 to 43) and slight changes in the yellow-green hue (h* decreased from 95 to 94). For the instrumental determinations of colour and visual perception of consistency, the most suitable parameters for quality control are the colour coordinates L*, a*, h*, whiteness index and flow distance measured with a Bostwick consistometer. © 2011 Springer Science+Business Media, LLC.The authors thank the Ministerio de Educacion y Ciencia for the financial support given throughout the Project AGL 2010-22176. The authors are indebted to the Generalitat Valenciana (Valencia, Spain) for the Grant awarded to the author Maria Benlloch. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain.Benlloch Tinoco, M.; Varela Tomasco, PA.; Salvador Alcaraz, A.; Martínez Navarrete, N. (2012). Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree. Food and Bioprocess Technology. 5(8):3021-3031. https://doi.org/10.1007/s11947-011-0652-1S3021303158Albert, A., Varela, P., Salvador, A., & Fiszman, S. M. (2009). Improvement of crunchiness of battered fish nuggets. European Food Research and Technology, 228, 923–930.Alegria, P., Pinheiro, J., Gonçalves, E. M., Fernandes, I., Moldao, M., & Abreu, M. (2010). Evaluation of a pre-cut heat treatment as an alternative to chlorine in minimally processed shredded carrot. Innovative Food Science and Emerging Technologies, 11, 155–161.AOAC. (2000). Official Methods of Analysis of AOAC International. Gaithersburg: AOAC.Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951.Beirão-da-Costa, S., Steiner, A., Correia, L., Empis, J., & Moldão-Martins, M. (2006). Effects of maturity stage and mild heat treatments on quality of minimally processed kiwifruitfruit. Journal of Food Engineering, 76, 616–625.Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058.Bourne, M. C. (1982). Food texture and viscosity-concept and measurement. New York: Academic.Cano, M. P., Hernández, A., & de Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.Chiralt, A., Martínez-Navarrete, N., Camacho, M. M., & González, C. (1998). Experimentos de fisicoquímica de alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 3).Chiralt, A., Martínez-Navarrete, N., González, C., Talens, P., & Moraga, G. (2007). Propiedades físicas de los alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 16).Contreras, C., Martín, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes occurred during air drying of apple. Food Science and Technology/LWT, 38(5), 471–477.Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.de Ancos, B., Cano, M. P., Hernández, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 79, 663–670.Dubost, N. J., Shewfelt, R. L., & Eitenmiller, R. R. (2003). Consumer acceptability, sensory and instrumental analysis of peanut soy spreads. Journal of Food Quality, 26, 27–42.Escribano, S., Sánchez, F. J., & Lázaro, A. (2010). Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical-chemical attributes: indications for future genetics improvements. European Food Research and Technology, 231, 611–621.Fang, L., Jiang, B., & Zhang, T. (2008). Effect of combined high pressure and thermal treatment in kiwifruit peroxidase. Food Chemistry, 109, 802–807.Fisk, C. L., McDaniel, M. R., Strick, B. C., & Zhao, Y. (2006). Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) as affected by harvest maturity and storage. Sensory and Nutritive Qualities of Food, 71(3), 204–210.Fúster, C., Préstamo, G., & Cano, M. P. (1994). Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29.Guldas, M. (2003). Peeling and the physical and chemical properties of kiwi fruit. Journal of Food Processing Preservation, 27, 271–284.Igual, M., Contreras, C., & Martínez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science and Emerging Technologies, 11, 335–341.Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.Jaeger, S. R., Rossiter, K. L., Wismer, W. V., & Harker, F. R. (2003). Consumer-driven product development in the kiwifruit industry. Food Quality and Preference, 14, 187–198.Lawless, H., & Heymann, H. (1998). Sensory evaluation of food: Principles and practices. New York: Chapman & Hall.MAPA (2010). Plataforma de conocimiento para el medio rural y pesquero. National Agricultural Statistics Database, Spain, Available at: www.mapa.es . Accessed 05 October 2010.Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175.Mohammadi, A., Rafiee, S., Emam-Djomeh, Z., & Keyhani, A. (2008). Kinetic models for colour change in kiwifruit slices during Hoy Air drying. World Journal of Agricultural Sciences, 4(3), 376–383.Moretti, C. L., Mattos, L. M., Machado, C. M. M., & Kluge, R. A. (2007). Physiological and quality attributes associated with different centrifugation times of baby carrots. Horticultura Brasileira, 25, 557–561.Nielsen, S. S. (2010). Food analysis laboratory manual. New York: Springer.Oraguzie, N., Alspach, P., Volz, R., Whitworz, C., Ranatunga, C., Weskett, R., et al. (2009). Postharvest assessment of fruit quality parameters in apple using both instrument and an expert panel. Posthaverst Biology and Technology., 52, 279–287.Pagliarini, E., Laureati, M., & Lavelli, V. (2010). Sensory evaluation of gluten-free breads assessed by a trained panel of celiac assessors. European Food Research and Technology, 231, 37–46.Park, E. Y., & Luh, B. S. (1985). Polyphenol oxidase of kiwifruit. Journal of Food Science, 50, 678–684.Schubert, H., & Regier, M. (2010). The microwave processing of foods. London: Woodhead.Segnini, S., Dejmek, P., & Öste, R. (1999). Relationship between instrumental and sensory analysis of texture and colour of potato chips. Journal of Texture Studies, 30, 677–690.Sinija, V. R., & Mishra, H. N. (2011). Fuzzy analysis of sensory data for quality evaluation and ranking of instant green Tea powder and granules. Food Bioprocess Technology, 4, 408–416.Soufleros, E. H., Pissa, I., Petridis, D., Lygerakis, M., Mermelas, K., Boukouvalas, G., et al. (2001). Instrumental analysis of volatile and other compounds of Greek kiwi wine; sensory evaluation and optimization of its composition. Analytical, Nutritional and Clinical Methods Section, 75, 487–500.Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products-a review. Biosystems Engineering, 98, 1–16.Worch, T., Lê, S., & Punter, P. (2010). How reliable are the consumers? Comparison of sensory profiles from consumers and experts. Food Quality and Preference, 21, 309–318.Zanoni, B., Lavelli, V., Ambrosoli, R., Garavaglia, L., Minati, J., & Pagliarini, E. (2007). A model to predict shelf-life in air and darkness of cut, ready-to-use, fresh carrots under both isothermal and non-isothermal conditions. Journal of Food Engineering, 79, 586–591.Zolfaghari, M., Sahari, M. A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food Bioprocess Technology, 3, 239–246

    Taxonomy and identification of bacteria associated with acute oak decline

    Get PDF
    © 2017, The Author(s). Acute oak decline (AOD) is a relatively newly described disorder affecting native oak species in Britain. Symptomatic trees are characterised by stem bleeds from vertical fissures, necrotic lesions in the live tissue beneath and larval galleries of the two spotted oak buprestid (Agrilus biguttatus). Several abiotic and biotic factors can be responsible for tree death, however the tissue necrosis and stem weeping is thought to be caused by a combination of bacterial species. Following investigations of the current episode of AOD which began in 2008, numerous strains belonging to several different bacteria in the family Enterobacteriaceae have been consistently isolated from symptomatic tissue. The majority of these enterobacteria were found to be novel species, subspecies and even genera, which have now been formally classified. The most frequently isolated species from symptomatic oak are Gibbsiella quercinecans, Brenneria goodwinii and Rahnella victoriana. Identification of these bacteria is difficult due to similarities in colony morphology, phenotypic profile and 16S rRNA gene sequences. Current identification relies heavily on gyrB gene amplification and sequencing, which is time consuming and laborious. However, newer techniques based on detection of single nucleotide polymorphisms show greater promise for rapid and reliable identification of the bacteria associated with AOD

    How Digital Are the Digital Humanities? An Analysis of Two Scholarly Blogging Platforms

    Get PDF
    In this paper we compare two academic networking platforms, HASTAC and Hypotheses, to show the distinct ways in which they serve specific communities in the Digital Humanities (DH) in different national and disciplinary contexts. After providing background information on both platforms, we apply co-word analysis and topic modeling to show thematic similarities and differences between the two sites, focusing particularly on how they frame DH as a new paradigm in humanities research. We encounter a much higher ratio of posts using humanities-related terms compared to their digital counterparts, suggesting a one-way dependency of digital humanities-related terms on the corresponding unprefixed labels. The results also show that the terms digital archive, digital literacy, and digital pedagogy are relatively independent from the respective unprefixed terms, and that digital publishing, digital libraries, and digital media show considerable cross-pollination between the specialization and the general noun. The topic modeling reproduces these findings and reveals further differences between the two platforms. Our findings also indicate local differences in how the emerging field of DH is conceptualized and show dynamic topical shifts inside these respective contexts

    Drosophila as a Model for MECP2 Gain of Function in Neurons

    Get PDF
    Methyl-CpG-binding protein 2 (MECP2) is a multi-functional regulator of gene expression. In humans loss of MECP2 function causes classic Rett syndrome, but gain of MECP2 function also causes mental retardation. Although mouse models provide valuable insight into Mecp2 gain and loss of function, the identification of MECP2 genetic targets and interactors remains time intensive and complicated. This study takes a step toward utilizing Drosophila as a model to identify genetic targets and cellular consequences of MECP2 gain-of function mutations in neurons, the principle cell type affected in patients with Rett-related mental retardation. We show that heterologous expression of human MECP2 in Drosophila motoneurons causes distinct defects in dendritic structure and motor behavior, as reported with MECP2 gain of function in humans and mice. Multiple lines of evidence suggest that these defects arise from specific MECP2 function. First, neurons with MECP2-induced dendrite loss show normal membrane currents. Second, dendritic phenotypes require an intact methyl-CpG-binding domain. Third, dendritic defects are amended by reducing the dose of the chromatin remodeling protein, osa, indicating that MECP2 may act via chromatin remodeling in Drosophila. MECP2-induced motoneuron dendritic defects cause specific motor behavior defects that are easy to score in genetic screening. In sum, our data show that some aspects of MECP2 function can be studied in the Drosophila model, thus expanding the repertoire of genetic reagents that can be used to unravel specific neural functions of MECP2. However, additional genes and signaling pathways identified through such approaches in Drosophila will require careful validation in the mouse model

    Identification and Characterization of a Novel Multipotent Sub-Population of Sca-1+ Cardiac Progenitor Cells for Myocardial Regeneration

    Get PDF
    The cardiac stem/progenitor cells from adult mice were seeded at low density in serum-free medium. The colonies thus obtained were expanded separately and assessed for expression of stem cell antigen-1 (Sca-1). Two colonies each with high Sca-1 (CSH1; 95.9%; CSH2; 90.6%) and low Sca-1 (CSL1; 37.1%; CSL2; 17.4%) expressing cells were selected for further studies. Sca-1⁺ cells (98.4%) isolated using Magnetic Cell Sorting System (MACS) from the hearts were used as a control. Although the selected populations were similar in surface marker expression (low in c-kit, CD45, CD34, CD31 and high in CD29), these cells exhibited diverse differentiation potential. Unlike CSH1, CSH2 expressed Nanog, TERT, Bcrp1, Nestin, Musashi1 and Isl-1, and also showed differentiation into osteogenic, chondrogenic, smooth muscle, endothelial and cardiac lineages. MACS sorted cells exhibited similar tendency albeit with relatively weaker differentiation potential. Transplantation of CSH2 cells into infarcted heart showed attenuated infarction size, significantly preserved left ventricular function and anterior wall thickness, and increased capillary density. We also observed direct differentiation of transplanted cells into endothelium and cardiomyocytes.The cardiac stem/progenitor cells isolated by a combined clonal selection and surface marker approach possessed multiple stem cell features important for cardiac regeneration
    corecore