21,419 research outputs found

    Modified Renormalization Strategy for Sandpile Models

    Full text link
    Following the Renormalization Group scheme recently developed by Pietronero {\it et al}, we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile models. In our scheme, five sub-cells at a generic scale bb form the renormalized cell at the next larger scale. Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the computation of the critical exponent zz. The values obtained are in good agreement with both numerical and theoretical results previously reported.Comment: APS style, 9 pages and 3 figures. To be published in Phys. Rev.

    Sentiment cascades in the 15M movement

    Get PDF
    Recent grassroots movements have suggested that online social networks might play a key role in their organization, as adherents have a fast, many-to-many, communication channel to help coordinate their mobilization. The structure and dynamics of the networks constructed from the digital traces of protesters have been analyzed to some extent recently. However, less effort has been devoted to the analysis of the semantic content of messages exchanged during the protest. Using the data obtained from a microblogging service during the brewing and active phases of the 15M movement in Spain, we perform the first large scale test of theories on collective emotions and social interaction in collective actions. Our findings show that activity and information cascades in the movement are larger in the presence of negative collective emotions and when users express themselves in terms related to social content. At the level of individual participants, our results show that their social integration in the movement, as measured through social network metrics, increases with their level of engagement and of expression of negativity. Our findings show that non-rational factors play a role in the formation and activity of social movements through online media, having important consequences for viral spreading.Comment: EPJ Data Science vol 4 (2015) (forthcoming

    Twisted flux tube emergence from the convection zone to the corona

    Full text link
    3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.Comment: 53 pages,79 figures, Submitted to Ap

    Synchronization of Kuramoto Oscillators in Scale-Free Networks

    Full text link
    In this work, we study the synchronization of coupled phase oscillators on the underlying topology of scale-free networks. In particular, we assume that each network's component is an oscillator and that each interacts with the others following the Kuramoto model. We then study the onset of global phase synchronization and fully characterize the system's dynamics. We also found that the resynchronization time of a perturbed node decays as a power law of its connectivity, providing a simple analytical explanation to this interesting behavior.Comment: 7 pages and 4 eps figures, the text has been slightly modified and new references have been included. Final version to appear in Europhysics Letter

    Solar Flux Emergence Simulations

    Get PDF
    We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux with the same entropy as the non-magnetic plasma that is advected into a domain 48 Mm wide from from 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show little magnetic buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar pore-like structure.Comment: Solar Physics (in press), 12 pages, 13 figur

    Twisting solar coronal jet launched at the boundary of an active region

    Full text link
    A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the SDO satellite. The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s^{-1}. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfven wave. A topological analysis of an extrapolated field was performed. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Unlike classical lambda or Eiffel-tower shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of blowout jets; instead, the jet itself may have gained the twist of the flux rope(s) through reconnection. This event may represent a class of jets different from the classical quiescent or blowout jets, but to reach that conclusion, more observational and theoretical work is necessary.Comment: 12 pages, 9 figures, accepted for publication in A&

    Fluctuation-induced traffic congestion in heterogeneous networks

    Get PDF
    In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion -- a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible.Comment: 4 pages, 3 figure
    corecore