6,263 research outputs found
Synthetic Elastography using B-mode Ultrasound through a Deep Fully-Convolutional Neural Network
Shear-wave elastography (SWE) permits local estimation of tissue elasticity,
an important imaging marker in biomedicine. This recently-developed, advanced
technique assesses the speed of a laterally-travelling shear wave after an
acoustic radiation force "push" to estimate local Young's moduli in an
operator-independent fashion. In this work, we show how synthetic SWE (sSWE)
images can be generated based on conventional B-mode imaging through deep
learning. Using side-by-side-view B-mode/SWE images collected in 50 patients
with prostate cancer, we show that sSWE images with a pixel-wise mean absolute
error of 4.5+/-0.96 kPa with regard to the original SWE can be generated.
Visualization of high-level feature levels through t-Distributed Stochastic
Neighbor Embedding reveals substantial overlap between data from two different
scanners. Qualitatively, we examined the use of the sSWE methodology for B-mode
images obtained with a scanner without SWE functionality. We also examined the
use of this type of network in elasticity imaging in the thyroid. Limitations
of the technique reside in the fact that networks have to be retrained for
different organs, and that the method requires standardization of the imaging
settings and procedure. Future research will be aimed at development of sSWE as
an elasticity-related tissue typing strategy that is solely based on B-mode
ultrasound acquisition, and the examination of its clinical utility.Comment: (c) 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other work
Relationship between the light intensity and the distance from eucalyptus strips in pasture.
The recovery of degraded pastures can be done by integrated crop-livestock-forest systems (CLFS). Improving ambience for livestock without economically affecting production in this kind of system depends on orientation, length and surface area of shades projected by trees. Therefore, this study aimed to evaluate the shading of eucalyptus strips in the pasture
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins.Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven protonpump bacteriorhodopsin (bR) at a resolution of 2.4 A ° . The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway
Ten-year survival trends of neovascular age-related macular degeneration at first presentation
BACKGROUND: To describe 10-year trends in visual outcomes, anatomical outcomes and treatment burden of patients receiving antivascular endothelial growth factor (anti-VEGF) therapy for neovascular age-related macular degeneration (nAMD). METHODS: Retrospective cohort study of treatment-naïve, first-affected eyes with nAMD started on ranibizumab before January 1, 2009. The primary outcome was time to best-corrected visual acuity (BCVA) falling ≤35 ETDRS letters after initiating anti-VEGF therapy. Secondary outcomes included time to BCVA reaching ≥70 letters, proportion of eyes with BCVA ≥70 and ≤35 letters in 10 years, mean trend of BCVA and central retinal thickness over 10 years, and mean number of injections. RESULTS: For our cohort of 103 patients, Kaplan-Meier analyses demonstrated median time to BCVA reaching ≤35 and ≥70 letters were 37.8 (95% CI 22.2 to 65.1) and 8.3 (95% CI 4.8 to 20.9) months after commencing anti-VEGF therapy, respectively. At the final follow-up, BCVA was ≤35 letters and ≥70 letters in 41.1% and 21%, respectively, in first-affected eyes, while this was the case for 5.4% and 48.2%, respectively, in a patient's better-seeing eye. Mean injection number was 37.0±24.2 per eye and 53.6±30.1 at patient level (63.1% of patients required injections in both eyes). CONCLUSIONS: The chronicity of nAMD disease and its management highlights the importance of long-term visual prognosis. Our analyses suggest that one in five patients will retain good vision (BCVA ≥70 ETDRS letters) in the first-affected eye at 10 years after starting anti-VEGF treatment; yet, one in two patients will have good vision in their better-seeing eye. Moreover, our data suggest that early treatment of nAMD is associated with better visual outcomes
- …