785 research outputs found
Recommended from our members
Critical heat flux experiments in a heated rod bundle with upward crossflow of Freon 114
Critical heat flux (CHF) data were obtained for upward crossflow of R-114 in a heated staggered rod bundle. Data were obtained over a broad range of mass fluxes (135 to 1,221 kg/m{sup 2} sec), inlet subcooling (0 to 55 C), and qualities ({minus}0.42 to 0.92). The present work extends the available database to higher quality, inlet subcooling, and mass flux. The test section is 3.43 cm x 15.24 cm (1.35 in. x 6 in.) in cross section with a total length of 55.88 cm (22 inches) from the top of the inlet flow straightener to the perforated plate at the test section exit. The rod bundle has a triangular pitch with a diameter (D) of 0.635 cm (0.25 in), and a pitch to diameter (P/D) ratio of 1.5. The rod bundle has 165 rods with a 15.24 cm (6 in.) heated length arranged in 55 rows of three rods each. Unheated half rods were positioned on the walls of the test section to maintain the regular rod arrangement and prevent flow bypass along the gaps between the window and the first column of heated rods. A single instrumented heater was positioned five rows upstream from the bundle exit to determine CHF. The last three rows of rods in the bundle were unheated to prevent undetected dryout downstream of the CHF position. Temperature excursions due to CHF were sensed using four imbedded thermocouples (TC) in the heater rod. The four TC temperatures were continuously monitored on a strip chart recorder. The rod heat was gradually increased until CHF was detected. Overall, the data are in good agreement with the Jensen and Tang correlation in the range of application of this correlation. The local minima in CHF which occurs near zero quality is slightly lower in the present experiment than for the Jensen and Tang correlation. At high quality, CHF drops off more rapidly than the Jensen-Tang prediction. Data are now available to extend the existing correlations to higher quality, and higher inlet subcooling
Anomalous specific heat in high-density QED and QCD
Long-range quasi-static gauge-boson interactions lead to anomalous
(non-Fermi-liquid) behavior of the specific heat in the low-temperature limit
of an electron or quark gas with a leading term. We obtain
perturbative results beyond the leading log approximation and find that
dynamical screening gives rise to a low-temperature series involving also
anomalous fractional powers . We determine their coefficients in
perturbation theory up to and including order and compare with exact
numerical results obtained in the large- limit of QED and QCD.Comment: REVTEX4, 6 pages, 2 figures; v2: minor improvements, references
added; v3: factor of 2 error in the T^(7/3) coefficient corrected and plots
update
Doppler-Free Spectroscopy of Weak Transitions: An Analytical Model Applied to Formaldehyde
Experimental observation of Doppler-free signals for weak transitions can be
greatly facilitated by an estimate for their expected amplitudes. We derive an
analytical model which allows the Doppler-free amplitude to be estimated for
small Doppler-free signals. Application of this model to formaldehyde allows
the amplitude of experimentally observed Doppler-free signals to be reproduced
to within the experimental error.Comment: 7 pages, 7 figures, 1 table, v2: many small improvements + corrected
line assignmen
A progressive refinement approach for the visualisation of implicit surfaces
Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting
Thermodynamics of Large-N_f QCD at Finite Chemical Potential
We extend the previously obtained results for the thermodynamic potential of
hot QCD in the limit of large number of fermions to non-vanishing chemical
potential. We give exact results for the thermal pressure in the entire range
of temperature and chemical potential for which the presence of a Landau pole
is negligible numerically. In addition we compute linear and non-linear quark
susceptibilities at zero chemical potential, and the entropy at small
temperatures. We compare with the available perturbative results and determine
their range of applicability. Our numerical accuracy is sufficiently high to
check and verify existing results, including the recent perturbative results by
Vuorinen on quark number susceptibilities and the older results by Freedman and
McLerran on the pressure at zero temperature and high chemical potential. We
also obtain a number of perturbative coefficients at sixth order in the
coupling that have not yet been calculated analytically. In the case of both
non-zero temperature and non-zero chemical potential, we investigate the range
of validity of a scaling behaviour noticed recently in lattice calculations by
Fodor, Katz, and Szabo at moderately large chemical potential and find that it
breaks down rather abruptly at , which points to a
presumably generic obstruction for extrapolating data from small to large
chemical potential. At sufficiently small temperatures , we find
dominating non-Fermi-liquid contributions to the interaction part of the
entropy, which exhibits strong nonlinearity in the temperature and an excess
over the free-theory value.Comment: 18 pages, 7 figures, JHEP style; v2: several updates, rewritten and
extended sect. 3.4 covering now "Entropy at small temperatures and
non-Fermi-liquid behaviour"; v3: additional remarks at the end of sect. 3.4;
v4: minor corrections and additions (version to appear in JHEP
Search for and Using Genetic Programming Event Selection
We apply a genetic programming technique to search for the double Cabibbo
suppressed decays and .
We normalize these decays to their Cabibbo favored partners and find
\Lambda_c^+ \to p K^+ \pi^-\Lambda_c^+ \to p K^-
\pi^+ and D_s^+ \to K^+ K^+
\pi^-D_s^+ \to K^+ K^- \pi^+ where
the first errors are statistical and the second are systematic. Expressed as
90% confidence levels (CL), we find and respectively.
This is the first successful use of genetic programming in a high energy
physics data analysis.Comment: 10 page
A Non-parametric Approach to the D+ to K*0bar mu+ nu Form Factors
Using a large sample of D+ -> K- pi+ mu+ nu decays collected by the FOCUS
photoproduction experiment at Fermilab, we present the first measurements of
the helicity basis form factors free from the assumption of spectroscopic pole
dominance. We also present the first information on the form factor that
controls the s-wave interference discussed in a previous paper by the FOCUS
collaboration. We find reasonable agreement with the usual assumption of
spectroscopic pole dominance and measured form factor ratios.Comment: 14 pages, 5 figures, and 2 tables. We updated the previous version by
changing some words, removing one plot, and adding two tables. These changes
are mostly stylisti
Study of the D^0 \to pi^-pi^+pi^-pi^+ decay
Using data from the FOCUS (E831) experiment at Fermilab, we present new
measurements for the Cabibbo-suppressed decay mode . We measure the branching ratio .
An amplitude analysis has been performed, a first for this channel, in order to
determine the resonant substructure of this decay mode. The dominant component
is the decay , accounting for 60% of the decay rate.
The second most dominant contribution comes from the decay , with a fraction of 25%. We also study the
line shape and resonant substructure. Using the helicity formalism for the
angular distribution of the decay , we measure
a longitudinal polarization of %.Comment: 38 pages, 8 figures. accepted for publication in Physical Review
Measurement of the branching ratio of the decay D^0 -> \pi^-\mu^+\nu relative to D^0 -> K^-\mu^+\nu
We present a new measurement of the branching ratio of the Cabibbo suppressed
decay D^0\to \pi^-\mu^+\nu relative to the Cabibbo favored decay D^0\to
K^-\mu^+\nu and an improved measurement of the ratio
|\frac{f_+^{\pi}(0)}{f_+^{K}(0)}|. Our results are 0.074 \pm 0.008 \pm 0.007
for the branching ratio and 0.85 \pm 0.04 \pm 0.04 \pm 0.01 for the form factor
ratio, respectively.Comment: 13pages, 3 figure
- …