329 research outputs found
Does cutting down on your food consumption lead to a net improvement in nutritional intake? A panel data approach using data from the UK Biobank
Background
Food diets are complex and a policy targeting one item of a person’s diet does not affect their nutritional intake in a solely additive or subtractive manner. Policies tackling unhealthy diets are more likely to be adopted by governments if there is robust evidence to support them. To evaluate dietary policies, it is important to understand the correlations and interdependencies between food groups, as these can lead to unintended negative consequences. We aimed to see whether reductions in consumption of a particular group is related to a net improvement in nutritional intake, after taking into account patterns of consumption and substitution across food groups.
Methods
Detailed dietary data was collected using a 24-h online dietary assessment from the UK Biobank and Oxford Web Q (n = 185,611). We used panel data fixed effects methods to estimate changes in energy, saturated fat, total sugar, and fibre following a 100gram reduction across 44 food groups. We compare these estimates against the average nutritional value of that food group from the UK National Diet and Nutrition Survey.
Results
We find evidence of variation in whether a food is compensated between the main confectionery products. Crisps, savoury snacks, and sugar confectionery are less likely to be compensated, whereas chocolate confectionery, biscuits, and buns/cakes/pastries and pies are compensated. The result is particularly striking for chocolate confectionery which shows that while chocolate confectionery often has a high energy content, eating less chocolate confectionery is not associated with an equal reduction in energy. Instead, we find individuals switch or compensate for their reduction in chocolate confectionery consumption with other high energy food items.
Conclusions
We find that sugar confectionery and crisps and savoury snacks are less likely to result in substitution than chocolate confectionery. This would suggest that food policies aiming to reduce the consumption of these food groups are more likely to result in overall lower consumption of unhealthy foods
Impacts and effects of ocean warming on intertidal rocky habitats.
• Intertidal rocky habitats comprise over 50% of the shorelines of the world, supporting a diversity of marine life and providing extensive ecosystem services worth in the region of US$ 5-10 trillion per year. • They are valuable indicators of the impacts of climate change on the wider marine environment and ecosystems. • Changes in species distributions, abundance and phenology have already been observed around the world in response to recent rapid climate change. • Species-level responses will have considerable ramifications for the structure of communities and trophic interactions, leading to eventual changes in ecosystem functioning (e.g. less primary producing canopy-forming algae in the North-east Atlantic). • Whilst progress is made on the mitigation1 required to achieve goals of a lower-carbon world, much can be done to enhance resilience to climate change. Managing the multitude of other interactive impacts on the marine environment, over which society has greater potential control (e.g. overfishing, invasive non-native species, coastal development, and pollution), will enable adaptation1 in the short and medium term of the next 5-50 years
Geometric effects on T-breaking in p+ip and d+id superconductors
Superconducting order parameters that change phase around the Fermi surface
modify Josephson tunneling behavior, as in the phase-sensitive measurements
that confirmed order in the cuprates. This paper studies Josephson coupling
when the individual grains break time-reversal symmetry; the specific cases
considered are and , which may appear in SrRuO and
NaCoO(HO) respectively. -breaking order parameters
lead to frustrating phases when not all grains have the same sign of
time-reversal symmetry breaking, and the effects of these frustrating phases
depend sensitively on geometry for 2D arrays of coupled grains. These systems
can show perfect superconducting order with or without macroscopic
-breaking. The honeycomb lattice of superconducting grains has a
superconducting phase with no spontaneous breaking of but instead power-law
correlations. The superconducting transition in this case is driven by binding
of fractional vortices, and the zero-temperature criticality realizes a
generalization of Baxter's three-color model.Comment: 8 page
Localization of the thyrotropin-releasing hormone gene, Trh , on mouse Chromosome 6
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47026/1/335_2004_Article_BF00355651.pd
Lowest-Landau-level theory of the quantum Hall effect: the Fermi-liquid-like state
A theory for a Fermi-liquid-like state in a system of charged bosons at
filling factor one is developed, working in the lowest Landau level. The
approach is based on a representation of the problem as fermions with a system
of constraints, introduced by Pasquier and Haldane (unpublished). This makes
the system a gauge theory with gauge algebra W_infty. The low-energy theory is
analyzed based on Hartree-Fock and a corresponding conserving approximation.
This is shown to be equivalent to introducing a gauge field, which at long
wavelengths gives an infinite-coupling U(1) gauge theory, without a
Chern-Simons term. The system is compressible, and the Fermi-liquid properties
are similar, but not identical, to those in the previous U(1) Chern-Simons
fermion theory. The fermions in the theory are effectively neutral but carry a
dipole moment. The density-density response, longitudinal conductivity, and the
current density are considered explicitly.Comment: 32 pages, revtex multicol
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- …