186 research outputs found
Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films
Multiwavelength Raman spectroscopy is employed to investigate ultrananocrystalline diamond films deposited by the plasma enhanced chemical vapor deposition technique. Recently, we have shown that the addition of nitrogen in the gas source during synthesis induce the formation of diamond n-type films, exhibiting the highest electrical conductivity at ambient temperature. This point is related with the formation of elongated diamond nanostructures and the presence of sp2-bonded carbon in these films. The Raman results presented here confirm these aspects and provide a better and deeper understanding of the nature of these films and their related optical and electronic properties
Development of automated tools based on electronic identification for the improvement of organic livestock production systems
Technical constraints of livestock production in organic farming systems are numerous and require more attention than in conventional systems. The implementation of individual electronic identification that is planned in Europe offers the possibility of developing automated devices that may be well adapted to the practices of organic breeders. We developed an automated mounting detector, carried by a male, which makes it possible to detect any female in oestrus. Hence, this device is the unique solution for inseminating females when they are fertile, thus ensuring links with selection programmes. The second
device developed is a dynamic sorting door based on respect for animal behaviour, preventing stress by allowing animals not to be unnecessarily confined. When associated with an electronic weighing device, it offers the possibility of adapting health treatments to the appropriate animals, in agreement with organic breeding specifications. Finally, electronic identification combined with GPS offers the breeder the possibility of simplifying the certification of animals in areas converted to organic farming. We believe that these technologies may greatly reduce the workload of breeders while improving animal welfare
(HT)-Raman microscopy to study (U,Pu)O2 fuel microstructure illustration on (U,La)O2 and CeO2; first results on (U,Pu)O2
International audienc
Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon
Aims.Interplanetary dust particle (IDP) matter probably evolved under irradiation in the interstellar medium (ISM) and the solar nebula. Currently IDPs are exposed to irradiation in the Solar System. Here the effects of UV and proton processing on IDP matter are studied experimentally. The structure and chemical composition of the bulk of carbon matter in IDPs is characterized. Methods: .Several IDPs were further irradiated in the laboratory using ultraviolet (UV) photons and protons in order to study the effects of such processing. By means of infrared and Raman spectroscopy, IDPs were also compared to different materials that serve as analogs of carbon grains in the dense and diffuse ISM. Results: .The carbonaceous fraction of IDPs is dehydrogenated by exposure to hard UV photons or 1 MeV protons. On the other hand, proton irradiation at lower energies (20 keV) leads to an efficient hydrogenation of the carbonaceous IDP matter. The dominant type of carbon in IDPs, observed with Raman and infrared spectroscopy, is found to be either a form of amorphous carbon (a-C) or hydrogenated amorphous carbon (a-C:H), depending on the IDP, consisting of aromatic units with an average domain size of 1.35 nm (5-6 rings in diameter), linked by aliphatic chains. Conclusions: .The D- and 15N-enrichments associated to an aliphatic component in some IDPs are probably the result of chemical reactions at cold temperatures. It is proposed that the amorphous carbon in IDPs was formed by energetic processing (UV photons and cosmic rays) of icy grains, maybe during the dense cloud stage, and more likely on the surface of the disk during the T Tauri phase of our Sun. This would explain the isotopic anomalies and morphology of IDPs. Partial annealing, 300-400°C, is required to convert an organic residue from ice photoprocessing into the amorphous carbon with low heteroatom content found in IDPs. Such annealing might have occurred as the particles approached the Sun and/or during atmospheric entry heating
Probing high pressure properties of single wall carbon nanotubes through fullerene encapsulation
The high pressure behavior of bundled 1.35±0.1nm diameter single wall carbon nanotubes (SWNT) filled with C70 fullerenes (usually called peapods) has been investigated by Raman spectroscopy and compared with the corresponding behavior of the nonfilled SWNT. We show experimentally that two reversible pressure-induced transitions take place in the compressed bundle SWNT. The first transition, in the 2â2.5GPa range, is in good correspondence with predictions of the thermodynamic instability of the nanotube circular cross section for the studied tube diameter. An interaction between the fullerenes and the tube walls is then observed at about 3.5GPa, which evidences a progressive deformation of the tube cross section. The second transition takes place at pressures between 10 and 30GPa, and is evidenced by two effects by a strong frequency downshift of the Raman transverse modes and the concomitant disappearance of the fullerenes Raman modes in peapods. The pressure at which the second transition takes place is strongly dependent on the nature of the pressure transmitting medium. We also report irreversible effects at high pressure as the shortening of the tubes, the formation of nanostructures and the disappearance of the C70 Raman signal in some cases. Transmission electron microscopy studies are also reported supporting these transformations
Recommended from our members
Novel integrin endocytosis motif
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible ÎČ-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through ÎČ subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΊ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-ÎŒ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.We gratefully acknowledge the following funding sources: N.d.F. FinPharma Doctoral Program, Instrumentarium Foundation, Orion Research Foundation, Liv och Halsa foundation, Finsk-Norska Medicinska Stiftelsen and the Magnus Ehrnrooth Foundation; J.I. Academy of Finland CoE, European Research Council Consolidator Grant, the Sigrid Juselius Foundation, The Finnish Heart Foundation and Finnish Cancer Organizations. DJO, AGW and TW are funded by Wellcome Trust fellowship 090909 (DJO).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.3161
Clathrin-containing adhesion complexes
An understanding of the mechanisms whereby cell adhesion complexes (ACs) relay signals bidirectionally across the plasma membrane is necessary to interpret the role of adhesion in regulating migration, differentiation, and growth. A range of AC types has been defined, but to date all have similar compositions and are dependent on a connection to the actin cytoskeleton. Recently, a new class of AC has been reported that normally lacks association with both the cytoskeleton and integrin-associated adhesome components, but is rich in components of the clathrin-mediated endocytosis machinery. The characterization of this new type of adhesion structure, which is emphasized by mitotic cells and cells in long-term culture, identifies a hitherto underappreciated link between the adhesion machinery and clathrin structures at the plasma membrane. While this discovery has implications for how ACs are assembled and disassembled, it raises many other issues. Consequently, to increase awareness within the field, and stimulate research, we explore a number of the most significant questions below
- âŠ