15 research outputs found
Recommended from our members
Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant
The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed
Recommended from our members
New concept for a high-repetition-rate reactor for inertial-confinement fusion
A new design concept was developed that has three additional features that are very important in reducing program risk: (1) through a proper choice of the working temperature (400 to 540/sup 0/C) and of the liquid metal (lithium or lead-lithium eutectic alloy), we can select a chamber pressure within the range of 10/sup -1/ to 10/sup -4/ Torr, required for the propagation of either a laser-beam or a heavy-ion-beam driver; (2) presently available ferritic steels can be used for the structural material; and (3) the new concept allows flexibility in irradiaton geometry. Although two-sided irradiation at high f/Nos. seems most attractive from the standpoints of minimizing the number of chamber penetrations and of simplifing the layout of the balance of plant, we must provide for the possibility that target-implosion physics will require a more symmetrical illumination geometry
Recommended from our members
Optical design considerations for laser fusion reactors
The plan for the development of commercial inertial confinement fusion (ICF) power plants is discussed, emphasizing the utilization of the unique features of laser fusion to arrive at conceptual designs for reactors and optical systems which minimize the need for advanced materials and techniques requiring expensive test facilities. A conceptual design for a liquid lithium fall reactor is described which successfully deals with the hostile x-ray and neutron environment and promises to last the 30 year plant lifetime. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system and show promise of surviving a full year in order to minimize costly downtime. Damage mechanisms and protection techniques are discussed, and a recommendation is made for a high f-number metal mirror final focusing system
Recommended from our members
Laser program. Annual report, 1978
An overview of the entire program is given. The overview previews the report, highlights progress in 1978, and summarizes the facilities and resources of the laser program. The Argus, Shiva, and Nova facilities are described. The theory of fusion target design is discussed along with specialized techniques of target fabrication. (MOW
Recommended from our members
Secret high-temperature reactor concept for inertial fusion
The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850/sup 0/C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release
Recommended from our members
Conceptual design of a laser fusion power plant
A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned. (RME
Recommended from our members
Design studies of a laser fusion power plant
The conceptual design of a laser fusion power plant has been undertaken to exploit recent developments in target design. Advanced high-gain targets which have been developed make it possible to significantly relax the laser and optical system requirements. The power plant design features a reactor concept which utilizes a thick falling region of liquid lithium to protect the first-wall from the neutrons, x-rays, and charged particles that are produced in the thermonuclear microexplosion. The lithium waterfall has also been designed to be thick enough to significantly reduce the effects of 14 MeV neutrons and cyclical stresses on the blanket structure; thereby allowing us to consider smaller blanket structures which could last the lifetime of the plant. Fusion targets producing 700 MJ of thermonuclear energy are ignited by a 2 percent efficient, 1 MJ laser system at the rate of 1.4 Hz. Schemes for protecting the final focusing optics are described which are both compatible with this reactor system, and show promise of surviving a full year in order to minimize costly downtime
Recommended from our members
Inertial fusion: an energy-production option for the future
The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost
Recommended from our members
Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber
Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included