6,761 research outputs found
Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results
The mid-infrared properties of pre-planetary disks are sensitive to the
temperature and flaring profiles of disks for the regions where planet
formation is expected to occur. In order to constrain theories of planet
formation, we have carried out a mid-infrared (wavelength 10.7 microns) size
survey of young stellar objects using the segmented Keck telescope in a novel
configuration. We introduced a customized pattern of tilts to individual mirror
segments to allow efficient sparse-aperture interferometry, allowing full
aperture synthesis imaging with higher calibration precision than traditional
imaging. In contrast to previous surveys on smaller telescopes and with poorer
calibration precision, we find most objects in our sample are partially
resolved. Here we present the main observational results of our survey of 5
embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori
system, and 5 emission-line objects of uncertain classification. The observed
mid-infrared sizes do not obey the size-luminosity relation found at
near-infrared wavelengths and a companion paper will provide further modelling
analysis of this sample. In addition, we report imaging results for a few of
the most resolved objects, including complex emission around embedded massive
protostars, the photoevaporating circumbinary disk around MWC 361A, and the
subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure
Binary Cepheids from optical interferometry
Classical Cepheid stars have been considered since more than a century as
reliable tools to estimate distances in the universe thanks to their
Period-Luminosity (P-L) relationship. Moreover, they are also powerful
astrophysical laboratories, providing fundamental clues for studying the
pulsation and evolution of intermediate-mass stars. When in binary systems, we
can investigate the age and evolution of the Cepheid, estimate the mass and
distance, and constrain theoretical models. However, most of the companions are
located too close to the Cepheid (1-40 mas) to be spatially resolved with a
10-meter class telescope. The only way to spatially resolve such systems is to
use long-baseline interferometry. Recently, we have started a unique and
long-term interferometric program that aims at detecting and characterizing
physical parameters of the Cepheid companions, with as main objectives the
determination of accurate masses and geometric distances.Comment: 8 pages, Proceeding of the conference "Setting a new standard in the
analysis of binary stars", September 2013, Leuven, Belgiu
- …