132 research outputs found

    The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors

    Get PDF
    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to be affected by crop type, farm pest management strategy and urban development

    Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Get PDF
    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae) was enriched on terrestrial frogs. The presence of shared bacterial OTUs across geographic regions for selected host genera suggests the presence of core microbial communities which in Madagascar, might be driven more strongly by a species’ preference for specific microhabitats than by the physical, physiological or biochemical properties of their skin. These results corroborate that both host and environmental factors are driving community assembly of amphibian cutaneous microbial communities, and provide an improved foundation for elucidating their role in disease resistance

    Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    Get PDF
    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below the 80% herd immunity threshold, suggesting they may be at higher risk to chytridiomycosis if a lethal Bd genotype emerges in Madagascar. While this predictive approach rests on multiple assumptions, and incorporates only one component of hosts' defense against Bd, their culturable cutaneous bacterial defense, it can serve as a foundation for continued research on Bd-associated risk for the endemic frogs of Madagascar

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics

    Get PDF
    We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 < z < 0.7) galaxy sample (the `CMASS' sample) due to imaging systematics imparts a systematic error that is larger than the statistical error of the clustering measurements at scales s > 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on correlation function measurements and that this systematic error is negligible for the spherically averaged correlation function. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature (Anderson et al. 2012), constrain cosmological models using the full shape of the correlation function (Sanchez et al. 2012), and measure the rate of structure growth (Reid et al. 2012). (abridged)Comment: Matches version accepted by MNRAS. Clarifications and references have been added. See companion papers that share the "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:" titl

    Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties

    Get PDF
    Combining measurements of the galaxy power spectrum and the cosmic microwave background (CMB) is a powerful means of constraining the summed mass of neutrino species sum(m_nu), but is subject to systematic uncertainties due to non-linear structure formation, redshift-space distortions and galaxy bias. We empirically test the robustness of neutrino mass results to these effects by separately analyzing power spectra of red and blue galaxies from the Sloan Digital Sky Survey (SDSS-II) Data Release 7 (DR7), combined with the CMB five-year Wilkinson Microwave Anisotropy Probe (WMAP5) data. We consider fitting for a range of maximum wavenumber k using twelve different galaxy bias models. For example, using a new model based on perturbation theory and including redshift space distortions (Saito et al. 2009), the all-galaxy power spectrum combined with WMAP5 for a wavenumber range of k<0.2 Mpc/h yields 95% CL sum(m_nu)<0.46 eV. The red and blue galaxy power spectra give 0.41 and 0.63 eV respectively for this model. Using mock catalogues, we find the expected difference in these limits assuming a true neutrino mass of zero is 0.10 + or - 0.14 eV. Thus the difference of 0.22 eV between upper limits on neutrino mass for red and blue galaxies is approximately 1 sigma from the expected value. We find similar results for the other models and k ranges tested. This indicates good agreement for current data but hints at possible issues for next-generation surveys. Being able to perform such systematic tests is advantageous, and future surveys would benefit by including broad galaxy populations and luminosities that enable such a decomposition.Comment: 15 pages, 6 figures, matches version published in MNRA

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering

    Get PDF
    We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3,275 square degrees. Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broadband shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a LCDM expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of DA, H, and growth all separately require dark energy at z > 0.57, and when combined imply \Omega_{\Lambda} = 0.74 +/- 0.016, independent of the Universe's evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.Comment: 19 pages, 11 figures, submitted to MNRAS, comments welcom

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples

    Get PDF
    We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd,fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd,fid) at z = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd,fid) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ± 3.4 km s−1 Mpc−1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.Publisher PDFPeer reviewe

    Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA

    Get PDF
    Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries
    corecore