12 research outputs found

    From Topology to Phenotype in Protein–Protein Interaction Networks

    No full text
    We have recently witnessed an explosion in biological network data along with the development of computational approaches for their analyses. This new interdisciplinary research area is an integral part of systems biology, promising to provide new insights into organizational principles of life, as well as into evolution and disease. However, there is a danger that the area might become hindered by several emerging issues. In particular, there is typically a weak link between biological and computational scientists, resulting in the use of simple computational techniques of limited potential to explain these complex biological data. Hence, there is a danger that the community might view the topological features of network data as mere statistics, ignoring the value of the information contained in these data. This might result in the imposition of scientific doctrines, such as scale-free-centric (on the modelling side) and genome-centric (on the biological side) opinions onto this nascent research area. In this chapter, we take a network science perspective and present a brief, high-level overview of the area, commenting on possible challenges ahead. We focus on protein-protein interaction networks (PINs) in which nodes correspond to proteins in a cell and edges to physical bindings between the proteins. © 2010 Springer-Verlag London Limited
    corecore