29 research outputs found

    The ineffectiveness of entrepreneurship policy:Is policy formulation to blame?

    Get PDF
    Entrepreneurship policy has been criticised for its lack of effectiveness. Some scholars, such as Scott Shane in this journal, have argued that it is ‘bad’ public policy. But this simply begs the question why the legislative process should generate bad policy? To answer this question this study examines the UK’s enterprise policy process in the 2009–2010 period. It suggests that a key factor for the ineffectiveness of policy is how it is formulated. This stage in the policy process is seldom visible to those outside of government departments and has been largely ignored by prior research. The application of institutional theory provides a detailed theoretical understanding of the actors and the process by which enterprise policy is formulated. We find that by opening up the ‘black box’ of enterprise policy formulation, the process is dominated by powerful actors who govern the process with their interests

    Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H2O2—Implications for their role in disease, especially cancer

    Full text link

    Kinetics and binding capacity of six soils for structurally defined hydrolyzable and condensed tannins and related phenols

    No full text
    We investigated tannin–soil interactions by assessing the kinetics of sorption and sorption capacities, and their relationship to the chemical properties of six polyphenolic compounds and the textures of six soils. We developed a new extraction procedure for recovering tannins from soil samples by successive extraction with solvents of decreasing polarity.Sorption of polyphenolic compounds methyl gallate, catechin, oenothein B, pentagalloyl glucose, epigallocatechin gallate, and procyanidin dimer was determined using six soils with textures ranging from 7% silt–89% sand to 52% silt–22% sand. Sorption kinetics and capacity of the soils were determined using room temperature mixing with high performance liquid chromatography (HPLC) to determine polyphenol concentration. Tannins were extracted from soils loaded with known amounts of the model compounds using solvents with a range of polarities, and establishing recovery by HPLC. Multivariable regression was used to establish relationships between polyphenol properties and sorption, and between soil texture and sorption.Sorption of the polyphenols followed the Langmuir isotherm with unique binding capacity and kinetics of sorption for each compound. Tannin sorption was correlated to molecular weight and polarity. For an Ultisol pasture soil, up to 18.7 mg g−1 soil of the large, hydrophobic compound epigallocatechin gallate was bound compared to only 5.11 mg g−1 soil of the smaller, more polar compound methyl gallate. Kinetics of sorption also varied with sorption reaching equilibrium between 75 and 350 min. Silt and sand composition affected polyphenol sorption in a unique fashion for each polyphenol. Using sequential extraction with solvents ranging from polar (water) to non-polar (hexane), we extracted up to 42% of the material that had been loaded on the soil as a mixture of five polyphenols.This work demonstrates that the likely fate of tannins and related polyphenols from plant sources is rapid sorption, with little likelihood of release of unmodified tannins from the soil by leaching. Tight sorption impedes recovery and analysis of soil tannins, but better methods for extraction may improve our knowledge of tannins in the soil
    corecore