9 research outputs found

    EXTRACTION, MODIFICATION, AND CHARACTERIZATION OF NATURAL POLYMERS USED IN TRANSDERMAL DRUG DELIVERY SYSTEM: AN UPDATED REVIEW

    Get PDF
    The modified/regulated drug delivery system helps to sustain the delivery of the drug for a prolonged period. The modified drug delivery system is primarily aimed at ensuring protection, the effectiveness of the drug, and patient compliance. The transdermal drug delivery system (TDDS) falls within the modified drug delivery system, in which the goal is to deliver the drug at a fixed dose and regulated rate through the skin. Polymers are the backbone of the framework for providing transdermal systems. The polymer should be stable, non-toxic, economical, and provide a sustainable release of the drug. In general, natural polymers used in the TDDS as rate-controlling agents, protective, and stabilizing agents and also used to minimize the frequency of dosing and improve the drug’s effectiveness by localizing at the site of action. Nowadays, manufacturers are likely to use natural polymers due to many issues associated with drug release and side effects with synthetic polymers. Drug release processes from natural polymers include oxidation, diffusion, and swelling. Natural polymers may be used as the basis to achieve predetermined drug distribution throughout the body. The use of natural materials for traditional and modern types of dosage forms are gums, mucilages, resins, and plant waste etc. Thus, the main objective of this review article is to give a brief knowledge about the extraction, modification, characterization, and biomedical application of conventional natural polymers used in the transdermal drug delivery system and their future prospective

    Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review

    Get PDF
    The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk

    Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects

    No full text
    The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic

    Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art

    No full text
    A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science

    Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives

    No full text
    Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article

    Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks

    No full text
    Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field

    Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review

    No full text
    Abstract Background Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self‐antigens, which can cause systemic or site‐specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non‐coding RNAs that have been identified as essential contributors to the post‐transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. Aims This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA‐based theranostic interventions. Results & Discussion Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. Conclusion Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same

    Addressing the resurgence of global monkeypox (Mpox) through advanced drug delivery platforms

    No full text
    Monkeypox (Mpox) is a transmissible infection induced by the Monkeypox virus (a double-stranded DNA virus), recognised under the family orthopoxvirus genus. Monkeypox, like endemic diseases, is a substantial concern worldwide; thus, comprehending the pathogenesis and mutagenesis of amino acids is indispensable to combat the infection. According to the World Health Organization's report, about 89 thousand cases with 160 mortalities have been reported from 114 countries worldwide. The conventional orthopoxvirus vaccines developed on live attenuated viruses exempted any clinical validation from combating monkeypox due to inadequate immunogenicity, toxicity, instability, and multiple doses. Therefore, novel drug delivery systems come into the conception with high biological and mechanical characteristics to address the resurgence of Global Monkeypox. The edges of metallic biomaterials, novel molecules, and vaccine development in targeted therapy increase the modulation of the immune response and blockage of host-virus interaction, with enhanced stability for the antigens. Thus, this review strives to comprehend the viral cell pathogenesis concerning amino acid mutagenesis and current epidemiological standards of the Monkeypox disease across the globe. Furthermore, the review also recapitulates the various clinical challenges, current therapies, and progressive nanomedicine utilisation in the Monkeypox outbreak reinforced by various clinical trial reports. The contemporary challenges of novel drug delivery systems in Monkeypox treatment cannot be overlooked, and thus, authors have outlined the future strategies to develop successful nanomedicine to combat monkeypox. Future pandemics are inevitable but can be satisfactorily handled if we comprehend the crises, innovate, and develop cutting-edge technologies, especially by delving into frontiers like nanotechnology
    corecore