7,153 research outputs found
Eternally accelerating spacelike braneworld cosmologies
We construct an eternally inflating spacelike brane world model. If the space
dimension of the brane is three (SM2) or six (SM5) for M theory or four (SD3)
for superstring theory, a time-dependent -form field would supply a constant
energy density and cause exponentially expansion of the spacelike brane. In
these cases, the hyperbolic space perpendicular to the brane would not vary in
size. In the other cases, however, the extra space would vary in size.Comment: 8 pages, Mod. Phys. Lett. A Vol.21, No.40(2006) 2989-299
Temperature and pore pressure effects on the shear strength of granite in the brittle-plastic transition regime
Currently published lithospheric strength profiles lack constraints from experimental data for shear failure of typical crustal materials in the brittle-plastic transition regime in wet environments. Conventional triaxial shear fracture experiments were conducted to determine temperature and pore pressure effects on shear fracture strength of wet and dry Tsukuba granite. Experimental conditions were 70MPa < P-C < 480MPa, 10MPa < P-p < 300MPa, 25 A degreesC < T < 480 degreesC, at a constant strain rate of 10(-5)s(-1). An empirical relation is proposed which can predict the shear strength of Tsukuba granite, within the range of experimental conditions. Mechanical pore pressure effects are incorporated in the effective stress law. Chemical effects are enhanced at temperatures above 300 degreesC. Below 300 degreesC wet and dry granite strengths are temperature insensitive and wholly within the brittle regime. Above 400 degreesC, semi-brittle effects and ductility are observed
Eternally inflating cosmologies from intersecting spacelike branes
Intersecting spacelike braneworld cosmologies are investigated. The time axis
is set on the scale parameter of extra space, which may include more than one
timelike metric. Obtained are eternally inflating (i.e. undergoing late-time
inflation) Robertson-Walker spacetime and extra space with a constant scale
factor. In the case of multibrane solutions, some dimensions are static or
shrink. The fact that the largest supersymmetry algebra contains 32
supercharges in 4 dimensions imposes a restriction on the geometry of extra
space.Comment: 19 page
Specific Heat and Superfluid Density for Possible Two Different Superconducting States in NaxCoO2.yH2O
Several thermodynamic measurements for the cobaltate superconductor,
NaxCoO2.yH2O, have so far provided results inconsistent with each other. In
order to solve the discrepancies, we microscopically calculate the temperature
dependences of specific heat and superfluid density for this superconductor. We
show that two distinct specific-heat data from Oeschler et al. and Jin et al.
are reproduced, respectively, for the extended s-wave state and the p-wave
state. Two different superfluid-density data are also reproduced for each case.
These support our recent proposal of possible two different pairing states in
this material. In addition, we discuss the experimentally proposed large
residual Sommerfeld coefficient and extremely huge effective carrier mass.Comment: 5 pages, 4 figures, Submitted to J. Phys. Soc. Jp
Jesuit Art
Mia Mochizuki draws upon masterpieces and material culture from around the world to show how the pre-suppression Society of Jesus (1540–1773) pioneered structural innovations in the history of the image. ; Readership: All interested in early modern, religious, and global art history, and anyone concerned with Renaissance and Baroque art and architecture, Jesuit studies, and the world-wide circulation of prints. Keywords: Renaissance art, Baroque art, religious art, Jesuit art and architecture, global art history, print history, 1540–1773, Jesuit style, Spiritual Exercises, Evangelicae historiae imagines, Imago primi saeculi Societatis Iesu, Ignatius of Loyola, Francis Xavier
Presence of 3d Quadrupole Moment in LaTiO3 Studied by 47,49Ti NMR
Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this
compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero
external field indicate a large nuclear quadrupole splitting. This splitting is
ascribed to the presence of the rather large quadrupole moment of 3d electrons
at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is
inappropriate. The NMR spectra are well explained by the orbital ordering model
expressed approximately as originating from
a crystal field effect. It is also shown that most of the orbital moment is
quenched.Comment: 4 pages, 3 fugures; to appear in Phys. Rev. Let
Fulde-Ferrell-Larkin-Ovchinnikov State in the absence of a Magnetic Field
We propose that in a system with pocket Fermi surfaces, a pairing state with
a finite total momentum q_tot like the Fulde-Ferrell-Larkin-Ovchinnikov state
can be stabilized even without a magnetic field. When a pair is composed of
electrons on a pocket Fermi surface whose center is not located at Gamma point,
the pair inevitably has finite q_tot. To investigate this possibility, we
consider a two-orbital model on a square lattice that can realize pocket Fermi
surfaces and we apply fluctuation exchange approximation. Then, by changing the
electron number n per site, we indeed find that such superconducting states
with finite q_tot are stabilized when the system has pocket Fermi surfaces.Comment: 4 pages, 5 figure
Roles of Bond Alternation in Magnetic Phase Diagram of RMnO3
In order to investigate nature of the antiferromagnetic structures in
perovskite RMnO3, we study a Heisenberg J1-J2 model with bond alternation using
analytical and numerical approaches. The magnetic phase diagram which includes
incommensurate spiral states and commensurate collinear states is reproduced.
We discuss that the magnetic structure with up-up-down-down spin configuration
(E-type structure) and the ferroelectricity emerge cooperatively to stabilize
this phase. Magnetoelastic couplings are crucial to understand the magnetic and
electric phase diagram of RMnO3.Comment: 5 pages, 6 figure
Lattice Distortion and Magnetic Ground State of YTiO and LaTiO
Effects of lattice distortion on the magnetic ground state of YTiO and
LaiO are investigated on the basis accurate tight-binding parametrization
of the electronic structure extracted from the local-density
approximation. The complexity of these compounds is related with the fact that
the -level splitting, caused by lattice distortions, is comparable with
the energies of superexchange and spin-orbit interactions. Therefore, all these
interactions are equally important and should be treated on an equal footing.
The Hartree-Fock approximation fails to provide a coherent description
simultaneously for YTiO and LaTiO, and it is essential to go beyond.Comment: 4 pages, 3 figures (good quality figures are available via e-mail
CoO2-Layer-Thickness Dependence of Magnetic Properties and Possible Two Different Superconducting States in NaxCoO2.yH2O
In order to understand the experimentally proposed phase diagrams of
NaxCoO2.yH2O, we theoretically study the CoO2-layer-thickness dependence of
magnetic and superconducting (SC) properties by analyzing a multiorbital
Hubbard model using the random phase approximation. When the Co valence (s) is
+3.4, we show that the magnetic fluctuation exhibits strong layer-thickness
dependence where it is enhanced at finite (zero) momentum in the thicker
(thinner) layer system. A magnetic order phase appears sandwiched by two SC
phases, consistent with the experiments. These two SC phases have different
pairing states where one is the singlet extended s-wave state and the other is
the triplet p-wave state. On the other hand, only a triplet p-wave SC phase
with dome-shaped behavior of Tc is predicted when s=+3.5, which is also
consistent with the experiments. Controversial experimental results on the
magnetic properties are also discussed.Comment: 5 pages, 4 figures. Submitted to Journal of the Physical Society of
Japa
- …