23 research outputs found

    Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019

    Get PDF
    Background The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. Methods We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. Findings In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. Interpretation The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. Funding The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)

    Multivariate mixture modeling using skew-normal independent distributions

    Full text link
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)In this paper we consider a flexible class of models, with elements that are finite mixtures of multivariate skew-normal independent distributions. A general EM-type algorithm is employed for iteratively computing parameter estimates and this is discussed with emphasis on finite mixtures of skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. Further, a general information-based method for approximating the asymptotic covariance matrix of the estimates is also presented. The accuracy of the associated estimates and the efficiency of some information criteria are evaluated via simulation studies. Results obtained from the analysis of artificial and real data sets are reported illustrating the usefulness of the proposed methodology. The proposed EM-type algorithm and methods are implemented in the R package mixsmsn. (C) 2011 Elsevier B.V. All rights reserved.561126142Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [308109/2008-2]FAPESP [2008/11455-0, 2011/01437-8

    Flexible scan statistic test to detect disease clusters in hierarchical trees

    Full text link
    This paper presents a flexible scan test statistic to detect disease clusters in data sets represented as a hierarchical tree. The algorithm searches through the branches of the tree and it is able to aggregate leaves located in different branches. The test statistic combines two terms, the log-likelihood of the data and the amount of information necessary to computationally code each potential cluster. This second term penalizes the search algorithm avoiding the detection of oddly shaped clusters and it is based on the Minimum Description Length (MDL) principle. Our MDL method reaches an automatic compromise between bias and variance. We present simulated results showing that its power performance as compared to the usual scan statistic and the high accuracy of the MDL to identify clusters that are scattered on the tree. The MDL method is illustrated with a large database looking at the relationship between occupation and death from silicosis.27471573

    mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions

    Full text link
    We present the R package mixsmsn, which implements routines for maximum likelihood estimation (via an expectation maximization EM-type algorithm) in finite mixture models with components belonging to the class of scale mixtures of the skew-normal distribution, which we call the FMSMSN models. Both univariate and multivariate responses are considered. It is possible to fix the number of components of the mixture to be fitted, but there exists an option that transfers this responsibility to an automated procedure, through the analysis of several models choice criteria. Plotting routines to generate histograms, plug-in densities and contour plots using the fitted models output are also available. The precision of the EM estimates can be evaluated through their estimated standard deviations, which can be obtained by the provision of an approximation of the associated information matrix for each particular model in the FMSMSN family. A function to generate artificial samples from several elements of the family is also supplied. Finally, two real data sets are analyzed in order to show the usefulness of the package.541212
    corecore