4 research outputs found

    Functionalisation of the non-reducing end of chitin by selective periodate oxidation: A new approach to form complex block polysaccharides and water-soluble chitin-based block polymers

    No full text
    Most polysaccharides used in polysaccharide-based block copolymers are attached to the second block through the reducing end, due to the few and highly polysaccharide specific non-reducing end (NRE) functionalisation methods available. Chitin oligomers, prepared by nitrous acid degradation of chitosan (AnM) can, however, be selectively oxidised by periodate since they only possess a single vicinal diol in the NRE residue. Here, we show that both aldehydes formed after oxidation are highly reactive towards bifunctional oxyamines and hydrazide linkers. Sub-stochiometric amounts of linkers resulted in conjugation of AnM oligomers through both chain termini to yield a discrete distribution of ‘polymerised’ oligomers. Such chitin-based block polymers were, in contrast to chitins of the same chain lengths, water-soluble. Oxidised AnM oligomers, functionalised at both termini can also enable the preparation of more complex block polysaccharides such as ABA- or ABC-type

    2,5-Anhydro-D-Mannose End-Functionalized Chitin Oligomers Activated by Dioxyamines or Dihydrazides as Precursors of Diblock Oligosaccharides

    No full text
    Diblock oligosaccharides based on renewable resources allow for a range of new but, so far, little explored biomaterials. Coupling of blocks through their reducing ends ensures retention of many of their intrinsic properties that otherwise are perturbed in classical lateral modifications. Chitin is an abundant, biodegradable, bioactive, and self-assembling polysaccharide. However, most coupling protocols relevant for chitin blocks have shortcomings. Here we exploit the highly reactive 2,5-anhydro-D-mannose residue at the reducing end of chitin oligomers obtained by nitrous acid depolymerization. Subsequent activation by dihydrazides or dioxyamines provides precursors for chitin-based diblock oligosaccharides. These reactions are much faster than for other carbohydrates, and only acyclic imines (hydrazones or oximes) are formed (no cyclic N-glycosides). α-Picoline borane and cyanoborohydride are effective reductants of imines, but in contrast to most other carbohydrates, they are not selective for the imines in the present case. This could be circumvented by a simple two-step procedure. Attachment of a second block to hydrazide- or aminooxy-functionalized chitin oligomers turned out to be even faster than the attachment of the first block. The study provides simple protocols for the preparation of chitin-b-chitin and chitin-b-dextran diblock oligosaccharides without involving protection/deprotection strategies

    Activation of enzymatically produced chitooligosaccharides by dioxyamines and dihydrazides

    No full text
    Reducing end activation of poly-and oligosaccharides by bifunctional dioxyamines and dihydrazides enables aniline-free and cyanoborohydride-free conjugation to aldehyde-containing molecules, particles and surfaces without compromising the chain structure. Chitosans are due to their polycationic character, biodegradability, and bioactivity important candidates for conjugation. Here, we present a kinetic and structural study of the conjugation of a dioxyamine and a dihydrazide to enzymatically produced chitooligosaccharides ranging from N,N'-diacetylchitobiose to a decamer, all having N-acetyl D-glucosamine at the reducing end. Conjugation of the dioxyamine resulted in mixtures of (E)-and (Z)-oximes and β-N-pyranoside, whereas the dihydrazide yielded cyclic N-glycosides. Reaction kinetics was essentially independent of DP. Stable secondary amines were in both cases obtained by reduction with α-picoline borane, but higher temperatures were needed to obtain acceptable reduction rate. Comparison to dextran oligomers shows that the nature of the reducing end strongly influences the kinetics of both the conjugation and reduction
    corecore