4,862 research outputs found

    Anion and Cation-yield Spectroscopy of Core-excited SF6

    Full text link
    We report an extensive study on total and partial-ion-yield spectroscopy around both the S 2p and F 1s thresholds in SF6. All positive and negative single-ion channels have been measured. Below the F 1s threshold we detect a large variation in relative intensity of the resonant structures according to the specific channel monitored, indicating selective fragmentation. Above threshold, at variance with previous cases described by us, we detect high-intensity structures related to shape resonances not only in the cation channels but also for the anions. We discuss the applicability and limits of a model we have developed for the analysis of shape resonances in anion yields as a function of molecular size

    A New High-Level Reconfigurable Lossless Image Compression System for Space Applications

    Get PDF
    On board image data compression is an important feature of satellite remote sensing payloads. Reconfigurable Intellectual Property (IP) cores can enable change of functionality or modifications. A new and efficient lossless image compression scheme for space applications is proposed. In this paper, we present a lossless image compression IP core designed using AccelDSP, which gives users high level of flexibility. One typical configuration is implemented and tested on an FPGA prototyping board. Finally, it is integrated successfully into a System-on-Chip platform for payload data processing and control

    Luminescence of Ce3+ multicenters in Ca2+ -Mg2+ -Si4+ based garnet phosphors

    Full text link
    Comparison of the luminescent properties of Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce single crystalline films (SCF) phosphors, grown by the liquid phase epitaxy method, was performed in this work. We have observed formation of the Ce3+ multicenters in Ca3Sc2Si3O12: Ce and Ca2YMgScSi3O12: Ce in the emission and excitation spectra as well as in the decay kinetics of the Ce3+ luminescence in SCFs of these garnets. Such Ce3+ multicenters possess different crystal field strength due to the inhomogeneous local surroundings of the dodecahedral positions of garnet host at the substitution of the octahedral positions by hetero-valence Mg2+ and Sc3+ ions and the tetrahedral positions by Si4+ ions. We confirm the presence of an effective energy transfer between different Ce3+ multicenters in Ce3+ doped Ca3Sc2Si3O12 and Ca2YMgScSi3O12 garnets. The positive trends in variations of the spectroscopic properties of the Ca2YMgScSi3O12: Ce garnet with respect to Ca3Sc2Si3O12: Ce garnet were observed also due to substitution of the dodecahedral sites of the garnet host by Y3+ ions and the octahedral sites by Mg2+ ions, which can be suitable for the development of new converters of white LEDs. Namely, due to the Y3+-Mg2+ doping, the luminescence spectrum of Ce3+ ions in Ca2YMgScSi3O12: Ce SCFs significantly extends in the red range in comparison with the Ca3Sc2Si3O12: Ce SCF counterpart

    Integration of blockchain with connected and autonomous vehicles : vision and challenge

    Get PDF
    Connected and Autonomous Vehicles (CAVs) are introduced to improve individuals’ quality of life by offering a wide range of services. They collect a huge amount of data and exchange them with each other and the infrastructure. The collected data usually includes sensitive information about the users and the surrounding environment. Therefore, data security and privacy are among the main challenges in this industry. Blockchain, an emerging distributed ledger, has been considered by the research community as a potential solution for enhancing data security, integrity and transparency in Intelligent Transportation Systems (ITS). However, despite the emphasis of governments on the transparency of personal data protection practices, CAV stakeholders have not been successful in communicating appropriate information with the end-users regarding the procedure of collecting, storing and processing their personal data, as well as the data ownership. This paper provides a vision of the opportunities and challenges of adopting blockchain in ITS from the “data transparency" and “privacy" perspective. The main aim is to answer the following questions: (1) Considering the amount of personal data collected by the CAVs, such as location, how the integration of blockchain technology would affect transparency, fairness and lawfulness of personal data processing concerning the data subjects (as this is one of the main principles in the existing data protection regulations)? (2) How the trade-off between transparency and privacy can be addressed in blockchain-based ITS use cases

    Properties of Light Flavour Baryons in Hypercentral quark model

    Full text link
    The light flavour baryons are studied within the quark model using the hyper central description of the three-body system. The confinement potential is assumed as hypercentral coulomb plus power potential (hCPPνhCPP_\nu) with power index ν\nu. The masses and magnetic moments of light flavour baryons are computed for different power index, ν\nu starting from 0.5 to 1.5. The predicted masses and magnetic moments are found to attain a saturated value with respect to variation in ν\nu beyond the power index ν>\nu> 1.0. Further we computed transition magnetic moments and radiative decay width of light flavour baryons. The results are in good agreement with known experimental as well as other theoretical models.Comment: Accepted in Pramana J. of Physic

    Does mass drug administration for the integrated treatment of neglected tropical diseases really work? Assessing evidence for the control of schistosomiasis and soil-transmitted helminths in Uganda

    Get PDF
    This paper was one of four papers commissioned to review the role of social sciences in NTD control by TDR, the Special Programme for Research and Training on Tropical Diseases, which is executed by WHO and co-sponsored by UNICEF, UNDP, the World Bank and WHO.This article has been made available through the Brunel Open Access Publishing Fund.Background: Less is known about mass drug administration [MDA] for neglected tropical diseases [NTDs] than is suggested by those so vigorously promoting expansion of the approach. This paper fills an important gap: it draws upon local level research to examine the roll out of treatment for two NTDs, schistosomiasis and soil-transmitted helminths, in Uganda. Methods: Ethnographic research was undertaken over a period of four years between 2005-2009 in north-west and south-east Uganda. In addition to participant observation, survey data recording self-reported take-up of drugs for schistosomiasis, soil-transmitted helminths and, where relevant, lymphatic filariasis and onchocerciasis was collected from a random sample of at least 10% of households at study locations. Data recording the take-up of drugs in Ministry of Health registers for NTDs were analysed in the light of these ethnographic and social survey data. Results: The comparative analysis of the take-up of drugs among adults revealed that although most long term residents have been offered treatment at least once since 2004, the actual take up of drugs for schistosomiasis and soil-transmitted helminths varies considerably from one district to another and often also within districts. The specific reasons why MDA succeeds in some locations and falters in others relates to local dynamics. Issues such as population movement across borders, changing food supply, relations between drug distributors and targeted groups, rumours and conspiracy theories about the 'real' purpose of treatment, subjective experiences of side effects from treatment, alternative understandings of affliction, responses to social control measures and historical experiences of public health control measures, can all make a huge difference. The paper highlights the need to adapt MDA to local circumstances. It also points to specific generalisable issues, notably with respect to health education, drug distribution and more effective use of existing public health legislation. Conclusion: While it has been an achievement to have offered free drugs to so many adults, current standard practices of monitoring, evaluation and delivery of MDA for NTDs are inconsistent and inadequate. Efforts to integrate programmes have exacerbated the difficulties. Improved assessment of what is really happening on the ground will be an essential step in achieving long-term overall reduction of the NTD burden for impoverished communities.This article is available through the Brunel Open Access Publishing Fund

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments

    Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes

    Get PDF
    The Kondo-effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons and at low temperature this leads to a zero-bias conductance anomaly. This has become a common signature in bias-spectroscopy of single-electron transistors, observed in GaAs quantum dots as well as in various single-molecule transistors. While the zero-bias Kondo effect is well established it remains uncertain to what extent Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence. Here we report on a pronounced conductance peak observed at finite bias-voltage in a carbon nanotube quantum dot in the spin singlet ground state. We explain this finite-bias conductance anomaly by a nonequilibrium Kondo-effect involving excitations into a spin triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this nonequilibrium resonance.Comment: 21 pages, 5 figure

    Coffee consumption and prostate cancer risk: further evidence for inverse relationship

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher consumption of coffee intake has recently been linked with reduced risk of aggressive prostate cancer (PC) incidence, although meta-analysis of other studies that examine the association between coffee consumption and overall PC risk remains inconclusive. Only one recent study investigated the association between coffee intake and grade-specific incidence of PC, further evidence is required to understand the aetiology of aggressive PCs. Therefore, we conducted a prospective study to examine the relationship between coffee intake and overall as well as grade-specific PC risk.</p> <p>Methods</p> <p>We conducted a prospective cohort study of 6017 men who were enrolled in the Collaborative cohort study in the UK between 1970 and 1973 and followed up to 31st December 2007. Cox Proportional Hazards Models were used to evaluate the association between coffee consumption and overall, as well as Gleason grade-specific, PC incidence.</p> <p>Results</p> <p>Higher coffee consumption was inversely associated with risk of high grade but not with overall risk of PC. Men consuming 3 or more cups of coffee per day experienced 55% lower risk of high Gleason grade disease compared with non-coffee drinkers in analysis adjusted for age and social class (HR 0.45, 95% CI 0.23-0.90, p value for trend 0.01). This association changed a little after additional adjustment for Body Mass Index, smoking, cholesterol level, systolic blood pressure, tea intake and alcohol consumption.</p> <p>Conclusion</p> <p>Coffee consumption reduces the risk of aggressive PC but not the overall risk.</p

    Electrical detection of magnetic skyrmions by non-collinear magnetoresistance

    Full text link
    Magnetic skyrmions are localised non-collinear spin textures with high potential for future spintronic applications. Skyrmion phases have been discovered in a number of materials and a focus of current research is the preparation, detection, and manipulation of individual skyrmions for an implementation in devices. Local experimental characterization of skyrmions has been performed by, e.g., Lorentz microscopy or atomic-scale tunnel magnetoresistance measurements using spin-polarised scanning tunneling microscopy. Here, we report on a drastic change of the differential tunnel conductance for magnetic skyrmions arising from their non-collinearity: mixing between the spin channels locally alters the electronic structure, making a skyrmion electronically distinct from its ferromagnetic environment. We propose this non-collinear magnetoresistance (NCMR) as a reliable all-electrical detection scheme for skyrmions with an easy implementation into device architectures
    corecore