17 research outputs found

    Brain networks in posterior cortical atrophy: A single case tractography study and literature review

    No full text
    Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) Magnetic Resonance Imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways

    The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation

    Get PDF
    Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as ‘pseudoneglect’. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias), but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism
    corecore