13 research outputs found
DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells
Human chromosomal fragile sites are regions of the
genome that are prone to DNA breakage, and are
classified as common or rare, depending on their frequency
in the population. Common fragile sites frequently
coincide with the location of genes involved in carcinogenic
chromosomal translocations, suggesting their role in
cancer formation. However, there has been no direct
evidence linking breakage at fragile sites to the formation
of a cancer-specific translocation. Here, we studied the
involvement of fragile sites in the formation of RET/PTC
rearrangements, which are frequently found in papillary
thyroid carcinoma (PTC). These rearrangements are
commonly associated with radiation exposure; however,
most of the tumors found in adults are not linked to
radiation. In this study, we provide structural and
biochemical evidence that the RET, CCDC6 and NCOA4
genes participating in two major types of RET/PTC
rearrangements, are located in common fragile sites
FRA10C and FRA10G, and undergo DNA breakage
after exposure to fragile site-inducing chemicals. Moreover,
exposure of human thyroid cells to these chemicals
results in the formation of cancer-specific RET/PTC
rearrangements. These results provide the direct evidence
for the involvement of chromosomal fragile sites in the
generation of cancer-specific rearrangements in human cell
Pathogenesis and potential therapeutic targets in systemic lupus erythematosus: from bench to bedside
Systemic lupus erythematosus (SLE) is considered an autoimmune disease with multiorgan involvement. Many advances have been made during the last decade regarding inflammatory pathways, genetic and epigenetic alterations, adaptive and innate immune system mechanisms specifically involved in SLE pathogenesis. Apoptosis has been proposed as an important player in SLE pathogenesis more than a decade ago. However, only recently new key apoptotic pathways have been investigated and the link between apoptotic debris containing autoantigens, innate immunity and ongoing inflammation has been further elucidated. Better understanding of cellular mechanisms and involved cytokines contributed to the development of new biological drugs specifically addressed for SLE therapy