8 research outputs found

    Thrombin-Fibrinogen In Vitro Flow Model of Thrombus Growth in Cerebral Aneurysms

    Get PDF
    Cerebral aneurysms are balloon-like structures that develop on weakened areas of cerebral artery walls, with a significant risk of rupture. Thrombi formation is closely associated with cerebral aneurysms and has been observed both before and after intervention, leading to a wide variability of outcomes in patients with the condition. The attempt to manage the outcomes has led to the development of various computational models of cerebral aneurysm thrombosis. In the current study, we developed a simplified thrombin-fibrinogen flow system, based on commercially available purified human-derived plasma proteins, which enables thrombus growth and tracking in an idealized cerebral aneurysm geometry. A three-dimensional printed geometry of an idealized cerebral aneurysm and parent vessel configuration was developed. An unexpected outcome was that this phantom-based flow model allowed us to track clot growth over a period of time, by using optical imaging to record the progression of the growing clot into the flow field. Image processing techniques were subsequently used to extract important quantitative metrics from the imaging dataset, such as end point intracranial thrombus volume. The model clearly demonstrates that clot formation, in cerebral aneurysms, is a complex interplay between mechanics and biochemistry. This system is beneficial for verifying computational models of cerebral aneurysm thrombosis, particularly those focusing on initial angiographic occlusion outcomes, and will also assist manufacturers in optimizing interventional device designs

    Suture Line Response of End-to-Side Anastomosis: A Stress Concentration Methodology

    No full text
    End-to-side vascular anastomosis has a considerable complexity regarding the suturing of the juncture line between the artery and the graft. The present study proposes a stress–concentration methodology for the prediction of the stress distribution at the juncture line, aiming to provide generic expressions describing the response of an end-to-side anastomosis. The proposed methodology is based on general results obtained from the analysis of pipe connections, a topic that has been investigated in recent years in the field of offshore structural engineering. A key aspect for implementing the stress–concentration–factor approach is the recognition that the axial load due to pressure and flow dynamics exerted along the graft axis controls the “hot spots” on the juncture line, which in turn affects the mechanical response of the sutures. Several parameters, identified to influence the suture line response, are introduced in closed-form expressions for the suture line response calculations. The obtained results compare favorably with finite element results published in the literature. The proposed model predicts analytically the suture line response of end-to-side anastomosis, while capturing the influence of and interdependence among the problem parameters. Lower values of the graft radius, the distance between sequential stitches, and the intersecting angle between the artery and the graft are some of the key parameters that reduce the suture line response. The findings of this study are broad in scope and potentially applicable to improving the end-to-side anastomosis technique through improved functionality of the sutures and optimal selection of materials and anastomosis angle. © 2014, Biomedical Engineering Society
    corecore