9 research outputs found

    VASP: A Volumetric Analysis of Surface Properties Yields Insights into Protein-Ligand Binding Specificity

    Get PDF
    Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP), a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity

    HIV protease inhibitor resistance

    No full text
    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of structure-based drug design. The introduction of first-generation PIs marked the start of combination antiretroviral therapy. However, low bioavailability, high pill burden, and toxicity ultimately reduced adherence and limited long-term viral inhibition. Therapy failure was often associated with multiple protease inhibitor resistance mutations, both in the viral protease and its substrate (HIV gag protein), displaying a broad spectrum of resistance mechanisms. Unfortunately, selection of protease inhibitor resistance mutations often resulted in cross-resistance to other PIs. Therefore, second-generation approaches were imperative. Coadministration of a cytochrome P-450 3A4 inhibitor greatly improved the plasma concentration of PIs in the patient. A second advance was the development of PIs that were efficacious against first-generation PI-resistant HIV. Both approaches increased the number of protease mutations required by the virus to develop clinically relevant resistance, thereby raising the genetic barrier towards PI resistance. These improvements greatly contributed to the success of PI-based therapy

    HIV protease inhibitor resistance

    No full text
    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of structure-based drug design. The introduction of first-generation PIs marked the start of combination antiretroviral therapy. However, low bioavailability, high pill burden, and toxicity ultimately reduced adherence and limited long-term viral inhibition. Therapy failure was often associated with multiple protease inhibitor resistance mutations, both in the viral protease and its substrate (HIV gag protein), displaying a broad spectrum of resistance mechanisms. Unfortunately, selection of protease inhibitor resistance mutations often resulted in cross-resistance to other PIs. Therefore, second-generation approaches were imperative. Coadministration of a cytochrome P-450 3A4 inhibitor greatly improved the plasma concentration of PIs in the patient. A second advance was the development of PIs that were efficacious against first-generation PI-resistant HIV. Both approaches increased the number of protease mutations required by the virus to develop clinically relevant resistance, thereby raising the genetic barrier towards PI resistance. These improvements greatly contributed to the success of PI-based therapy
    corecore